OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15041–15046

Intensity based surface plasmon resonance sensor using a nanohole rectangular array

A-P. Blanchard-Dionne, L. Guyot, S. Patskovsky, R. Gordon, and M. Meunier  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15041-15046 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show high resolution measurements of a surface plasmon resonance (SPR) sensor based on a rectangular nanohole array in a metal film. This SPR setup uses balanced intensity detection between two orthogonal polarizations of a He-Ne laser beam, which allows for sensitivity improvement, noise reduction and rejection of any uncorrelated variation in the intensity signal. A bulk sensitivity resolution of 6.4x10−6 RIU is demonstrated. The proposed methodology is promising for applications in portable nanoplasmonic multisensing and imaging.

© 2011 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: March 8, 2011
Revised Manuscript: May 1, 2011
Manuscript Accepted: May 3, 2011
Published: July 21, 2011

A-P. Blanchard-Dionne, L. Guyot, S. Patskovsky, R. Gordon, and M. Meunier, "Intensity based surface plasmon resonance sensor using a nanohole rectangular array," Opt. Express 19, 15041-15046 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  3. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004). [CrossRef] [PubMed]
  4. D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluid. Nanofluid. 4(1-2), 107–116 (2008). [CrossRef]
  5. J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008). [CrossRef] [PubMed]
  6. F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009). [CrossRef] [PubMed]
  7. A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010). [CrossRef]
  8. E. S. Kwak, J. Henzie, S. H. Chang, S. K. Gray, G. C. Schatz, and T. W. Odom, “Surface plasmon standing waves in large-area subwavelength hole arrays,” Nano Lett. 5(10), 1963–1967 (2005). [CrossRef] [PubMed]
  9. J. L. Skinner, L. L. Hunter, A. A. Talin, J. Provine, and D. A. Horsley, “Large-Area Subwavelength Aperture Arrays Fabricated Using Nanoimprint Lithography,” IEEE Trans. NanoTechnol. 7(5), 527–531 (2008). [CrossRef]
  10. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic Sensing of Biological Analytes Through Nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008). [CrossRef]
  11. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009). [CrossRef] [PubMed]
  12. K. L. Lee, S. H. Wu, and P. K. Wei, “Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing,” Opt. Express 17(25), 23104–23113 (2009). [CrossRef] [PubMed]
  13. A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S. H. Oh, “Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing,” Opt. Express 16(1), 219–224 (2008). [CrossRef] [PubMed]
  14. www.biacore.com
  15. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999). [CrossRef]
  16. F. Eftekhari, R. Gordon, J. Ferreira, A. G. Brolo, and D. Sinton, “Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays,” Appl. Phys. Lett. 92(25), 253103 (2008). [CrossRef]
  17. E. Laux, C. Genet, and T. W. Ebbesen, “Enhanced optical transmission at the cutoff transition,” Opt. Express 17(9), 6920–6930 (2009). [CrossRef] [PubMed]
  18. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003). [CrossRef]
  19. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission throught periodic arrays os subwavelength holes,” Phys. Rev. Letters 92 183901 1–4 (2004)
  20. N. E. Dorsey, “Properties of ordinary water-substance,” Chem. Eng. News 18, 215 (1940).
  21. A. Arce, A. Arce, and A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Thermochim. Acta 435(2), 197–201 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited