OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15149–15154

Self-quenching InGaAs/InP single photon avalanche detector utilizing zinc diffusion rings

James Cheng, Sifang You, Samia Rahman, and Yu-Hwa Lo  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15149-15154 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



InGaAs single photon avalanche detectors have previously been fabricated with a negative-feedback mechanism, which allows for free-running Geiger-mode operation and improves the signal noise. To reduce the dark count and improve the detection efficiency, zinc diffusion is necessary to define the p-i-n junction and separate the high-field region from any mesa surface. Here, we demonstrate the benefits of a simple Zn-diffused geometry, yielding 1550nm single-photon detection efficiencies of 20% with a dark count rate of 8 kHz at 140 K for a 22μm diameter device.

© 2011 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(250.1345) Optoelectronics : Avalanche photodiodes (APDs)
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: May 19, 2011
Manuscript Accepted: June 27, 2011
Published: July 21, 2011

James Cheng, Sifang You, Samia Rahman, and Yu-Hwa Lo, "Self-quenching InGaAs/InP single photon avalanche detector utilizing zinc diffusion rings," Opt. Express 19, 15149-15154 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1381 (2004).
  2. A. Trifonov, D. Subacius, A. Berzanskis, and A. Zavriyev, “Single photon counting at telecom wavelength and quantum key distribution,” J. Mod. Opt. 51, 1399 (2004).
  3. K. Zhao, A. Zhang, Y.-H. Lo, and W. Farr, “InGaAs single photon avalanche detector with ultralow excess noise,” Appl. Phys. Lett. 91(8), 081107 (2007). [CrossRef]
  4. K. Zhao, S. You, J. Cheng, and Y.-H. Lo, “Self-quenching and self-recovering InGaAs/InAlAs single photon avalanche detector,” Appl. Phys. Lett. 93(15), 153504 (2008). [CrossRef]
  5. J. Cheng, S. You, K. Zhao, and Y.-H. Lo, “Self-quenched InGaAs single-photon detector,” Proc. SPIE 7320(732010), 732010, 732010-9 (2009). [CrossRef]
  6. H. Sudo and M. Suzuki, “Surface degradation mechanism of InP/InGaAs APDs,” J. Lightwave Technol. 6(10), 1496–1501 (1988). [CrossRef]
  7. Y. Liu, S. R. Forrest, J. Hladky, M. J. Lange, G. H. Olsen, and D. E. Ackley, “A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction,” J. Lightwave Technol. 10(2), 182–193 (1992). [CrossRef]
  8. G. Hasnain, W. G. Bi, S. Song, J. T. Anderson, N. Moll, C.-Y. Su, J. N. Hollenhorst, N. D. Baynes, I. Athroll, S. Amos, and R. M. Ash, “Buried-mesa avalanche photodiodes,” IEEE J. Quantum Electron. 34(12), 2321–2326 (1998). [CrossRef]
  9. M. D. Kim, J. M. Baek, T. G. Kim, S. G. Kim, and K. S. Chung, “Characterization of double floating guard ring type InP-InGaAs avalanche photodiodes with Au/Zn low resistance ohmic contacts,” Thin Solid Films 514(1–2), 250–253 (2006). [CrossRef]
  10. S. R. Cho, S. K. Yang, J. S. Ma, S. D. Lee, J. S. Yu, A. G. Choo, T. I. Kim, and J. Burm, “Suppression of avalanche multiplication at the periphery of diffused junction by floating guard rings in a planar InGaAs-InP avalanche photodiode,” IEEE Photon. Technol. Lett. 12(5), 534–536 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited