OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15181–15187

Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator

Hidetsugu Yoshida, Koji Tsubakimoto, Yasushi Fujimoto, Katsuhiro Mikami, Hisanori Fujita, Noriaki Miyanaga, Hoshiteru Nozawa, Hideki Yagi, Takagimi Yanagitani, Yutaka Nagata, and Hiroo Kinoshita  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15181-15187 (2011)
http://dx.doi.org/10.1364/OE.19.015181


View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical properties, Faraday effect and Verdet constant of ceramic terbium gallium garnet (TGG) have been measured at 1064 nm, and were found to be similar to those of single crystal TGG at room temperature. Observed optical characteristics, laser induced bulk-damage threshold and optical scattering properties of ceramic TGG were compared with those of single crystal TGG. Ceramic TGG is a promising Faraday material for high-average-power YAG lasers, Yb fiber lasers and high-peak power glass lasers for inertial fusion energy drivers.

© 2011 OSA

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect

ToC Category:
Materials

History
Original Manuscript: May 12, 2011
Revised Manuscript: May 31, 2011
Manuscript Accepted: June 15, 2011
Published: July 22, 2011

Citation
Hidetsugu Yoshida, Koji Tsubakimoto, Yasushi Fujimoto, Katsuhiro Mikami, Hisanori Fujita, Noriaki Miyanaga, Hoshiteru Nozawa, Hideki Yagi, Takagimi Yanagitani, Yutaka Nagata, and Hiroo Kinoshita, "Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator," Opt. Express 19, 15181-15187 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15181


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Korsunsky, J. Liu, D. Laundy, M. Golshan, and K. Kim, “Residual elastic strain due to laser shock peening: synchrotron diffraction measurement,” J. Strain Analysis 41(2), 113–120 (2006). [CrossRef]
  2. J. D. Kmetec, C. L. Gordon, J. J. Macklin, B. E. Lemoff, G. S. Brown, and S. E. Harris, “MeV x-ray generation with a femtosecond laser,” Phys. Rev. Lett. 68(10), 1527–1530 (1992). [CrossRef] [PubMed]
  3. N. Miyanaga, H. Azechi, K. A. Tanaka, T. Kanabe, T. Jitsuno, J. Kawanaka, Y. Fujimoto, R. Kodama, H. Shiraga, K. Knodo, K. Tsubakimoto, H. Habara, J. Lu, G. Xu, N. Morio, S. Matsuo, E. Miyaji, Y. Kawakami, Y. Izawa, and K. Mima, “10-kJ PW laser for the FIREX-I program,” in Inertial Fusion Sciences and Applications 2005, J.-C. Gauthier, et al., eds., (EDP sciences, Les Ulis cedex A, France, 2006), pp. 81- 87.
  4. T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett. 32(4), 349–351 (2007). [CrossRef] [PubMed]
  5. O. Schmidt, C. Wirth, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, and A. Tünnermann, “Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources,” Opt. Lett. 34(10), 1567–1569 (2009). [CrossRef] [PubMed]
  6. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010). [CrossRef] [PubMed]
  7. N. Hodgson, S. Dong, and Q. Lü, “Performance of a 2.3-kW Nd:YAG slab laser system,” Opt. Lett. 18(20), 1727–1729 (1993). [CrossRef] [PubMed]
  8. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007). [CrossRef]
  9. E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE 4968, 115–126 (2003). [CrossRef]
  10. M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004). [CrossRef] [PubMed]
  11. T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10–101333, (1998).
  12. T. Yanagitani, H. Yagi, and M. Ichikawa, Japanese Patent, 10–101411, (1998).
  13. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K.-I. Ueda, T. Yanagitani, and A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79(1), 25–28 (2004). [CrossRef]
  14. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express 15(18), 11255–11261 (2007). [CrossRef] [PubMed]
  15. H. Yagi, K. Takaichi, K. Ueda, Y. Yanagitani, and A. A. Kaminskii, “The physical properties of composite YAG ceramics,” Laser Phys. 15, 1338–1344 (2005).
  16. Electro-Optics Technology, Inc.”1030–1080nm high power free space faraday rotator & isolator,” Document 002–00028–0001 (02–15–10).
  17. T. Kamimura, Y. Kawaguchi, T. Arii, W. Shirai, T. Mikami, T. Okamoto, Y. L. Aung, and A. Ikesue, “Investigation of bulk laser damage in transparent YAG ceramics controlled with micro-structural refinement,” Proc. SPIE 7132, 713215 (2009).
  18. H. Yoshida, T. Jitsuno, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, and K. Yoshida, “Investigation of bulk laser damage in KDP crystal as a function of laser irradiation direction, polarization, wavelength,” Appl. Phys. B 70(2), 195–201 (2000). [CrossRef]
  19. H. Yoshida, H. Fujita, M. Nakatsuka, M. Yoshimura, T. Sasaki, T. Kamimura, and K. Yoshida, “Dependences of laser-induced bulk damage threshold and crack patterns in several nonlinear crystals on irradiation direction,” Jpn. J. Appl. Phys. 45(No. 2A), 766–769 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited