OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15265–15274

High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals

Joseph S. T. Smalley, Yanhui Zhao, Ahmad Ahsan Nawaz, Qingzhen Hao, Yi Ma, Iam-Choon Khoo, and Tony Jun Huang  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15265-15274 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1998 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed and simulated a dual-frequency liquid crystal (DFLC) based plasmonic signal modulator capable of achieving over 15 dB modulation depth. The voltage-controlled DFLC is combined with a groove and slit configuration and its operation is discussed. Using the finite-difference time domain (FDTD) method, simulations were conducted to discover the groove-slit separation distance that enabled a practically useful modulation depth for the two states of the DFLC. Moreover, we have shown that significant improvement in modulation depth can be achieved by addition of a second groove to the design structure. Additionally, a performance analysis indicates a switching energy on the order of femtojoules and a switching speed on the order of 100 microseconds. Results of this investigation can be useful for the future design, simulation, and fabrication of DFLC-based plasmonic signal modulating devices, which have application in electro-optical and all-optical information systems.

© 2011 OSA

OCIS Codes
(230.4110) Optical devices : Modulators
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: June 23, 2011
Revised Manuscript: July 19, 2011
Manuscript Accepted: July 20, 2011
Published: July 25, 2011

Joseph S. T. Smalley, Yanhui Zhao, Ahmad Ahsan Nawaz, Qingzhen Hao, Yi Ma, Iam-Choon Khoo, and Tony Jun Huang, "High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals," Opt. Express 19, 15265-15274 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing: Singapore, 2009).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon 1(3), 484–588 (2009). [CrossRef]
  3. N. Zheludev and K. MacDonald, “Active plasmonics: current status,” Laser Photon. Rev. 4, 527–532 (2010).
  4. J. Dionne, L. Sweatlock, M. Sheldon, P. Alivisatos, and H. Atwater, “Silicon-based plasmonics for on-chip applications,” IEEE J. Select. Top. Quantum Electron. 16, 295–306 (2010). [CrossRef]
  5. Y. Zhao, S. C. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18(22), 23458–23465 (2010). [CrossRef] [PubMed]
  6. Y. B. Zheng, L. Jensen, W. Yan, T. R. Walker, B. K. Juluri, L. Jensen, and T. J. Huang, “Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays,” J. Phys. Chem. C 113(17), 7019–7024 (2009). [CrossRef]
  7. Y. Zheng, T. J. Huang, A. Y. Desai, S. J. Wang, L. K. Tan, H. Gao, and A. C. H. Huan, “Thermal Behavior of Localized Surface Plasmon Resonance of Au/TiO2 Core/Shell Nanoparticle Arrays,” Appl. Phys. Lett. 90(18), 183117 (2007). [CrossRef]
  8. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  9. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8(11), 4048–4052 (2008). [CrossRef] [PubMed]
  10. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009). [CrossRef] [PubMed]
  11. R. A. Pala, K. T. Shimizu, N. A. Melosh, and M. L. Brongersma, “A nonvolatile plasmonic switch employing photochromic molecules,” Nano Lett. 8(5), 1506–1510 (2008). [CrossRef] [PubMed]
  12. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express 17(13), 11045–11056 (2009). [CrossRef] [PubMed]
  13. D. Pacifici, H. Lezec, and H. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  14. A. Krasavin and N. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004). [CrossRef]
  15. A. Krasavin, K. MacDonald, N. Zheludev, and A. Zayats, “High-contrast modulation of light with light by control of surface plasmon polariton wave coupling,” Appl. Phys. Lett. 85(16), 3369–3371 (2004). [CrossRef]
  16. G. Gagnon, N. Lahoud, G. Mattiussi, and P. Berini, “Thermally activated variable attenuation of a long-range surface plasmon-polaritons waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006). [CrossRef]
  17. Y. B. Zheng, Y. W. Yang, L. Jensen, L. Fang, B. K. Juluri, A. H. Flood, P. S. Weiss, J. F. Stoddart, and T. J. Huang, “Active molecular plasmonics: controlling plasmon resonances with molecular switches,” Nano Lett. 9(2), 819–825 (2009). [CrossRef] [PubMed]
  18. N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, “Evolutionary development of advanced liquid crystal spatial light modulators,” Appl. Opt. 28(22), 4740–4747 (1989). [CrossRef] [PubMed]
  19. E. Konshina, M. Fedorov, L. Amosova, M. Isaev, and D. Kostomarov, “Optical modulators based on a dual-frequency nematic liquid crystal,” J. Opt. Tech. 75(10), 670–675 (2008). [CrossRef]
  20. H. Huang, C. Wen, and S. Wu, “Polarization-independent and submillisecond response phase modulators using a 90 degrees twisted dual frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006). [CrossRef]
  21. I. C. Khoo, “Nonlinear Optics of Liquid Crystalline Materials,” Phys. Rep. 471(5-6), 221–267 (2009). [CrossRef]
  22. F. Simoni, Nonlinear Optical Properties of Liquid Crystals and Polymer Dispersed Liquid Crystals (World Scientific: Singapore) 1997.
  23. H. Xianya and C. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6-7), 717–726 (2009). [CrossRef]
  24. S. T. Wu and U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48(10), 624–626 (1986). [CrossRef]
  25. Q. Hao, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109(8), 084340 (2011). [CrossRef]
  26. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics 5(4), 234–238 (2011). [CrossRef]
  27. T. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000). [CrossRef]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Spring-Verlag: New York, 1988)
  29. Y. H. Fan, H. Ren, X. Liang, Y. H. Lin, and S. T. Wu, “Dual-frequency liquid crystal gels with sub-millisecond response time,” Appl. Phys. Lett. 85(13), 2451 (2004). [CrossRef]
  30. C. H. Wen and S. T. Wu, “Dielectric heating effects of dual-frequency liquid crystals,” Appl. Phys. Lett. 86(23), 231104 (2005). [CrossRef]
  31. E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007). [CrossRef]
  32. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72(23), 233105 (2005). [CrossRef]
  33. O. Pishnyak, S. Sato, and O. D. Lavrentovich, “Electrically tunable lens based on a dual-frequency nematic liquid crystal,” Appl. Opt. 45(19), 4576–4582 (2006). [CrossRef] [PubMed]
  34. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley: Hoboken, NJ, 2010).
  35. Y. Liu, Q. Hao, J. Smalley, J. Liou, I. Khoo, and T. Huang, “A frequency-addressed plasmonic switch using dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 9 (2010).
  36. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  37. OptiFDTD by Optiwave Corp., ver. 8.0, http://www.optiwave.com/
  38. E. Palik, Handbook of Optical Constants of Solids (Academic Press: San Diego, 1991).
  39. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited