OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15297–15303

Super Talbot effect in indefinite metamaterial

Wangshi Zhao, Xiaoyue Huang, and Zhaolin Lu  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15297-15303 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Talbot effect (or the self-imaging effect) can be observed for a periodic object with a pitch larger than the diffraction limit of an imaging system, where the paraxial approximation is applied. In this paper, we show that the super Talbot effect can be achieved in an indefinite metamaterial even when the period is much smaller than the diffraction limit in both two-dimensional and three-dimensional numerical simulations, where the paraxial approximation is not applied. This is attributed to the evanescent waves, which carry the information about subwavelength features of the object, can be converted into propagating waves and then conveyed to far field by the metamaterial, where the permittivity in the propagation direction is negative while the transverse ones are positive. The indefinite metamaterial can be approximated by a system of thin, alternating multilayer metal and insulator (MMI) stack. As long as the loss of the metamaterial is small enough, deep subwavelength image size can be obtained in the super Talbot effect.

© 2011 OSA

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: April 6, 2011
Revised Manuscript: June 2, 2011
Manuscript Accepted: June 16, 2011
Published: July 26, 2011

Wangshi Zhao, Xiaoyue Huang, and Zhaolin Lu, "Super Talbot effect in indefinite metamaterial," Opt. Express 19, 15297-15303 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  4. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  5. Z. Lu, C. A. Schuetz, S. Shi, C. Chen, G. P. Behrmann, and D. W. Prather, “Experimental demonstration of self-collimation in low index contrast photonic crystals in the millimeter wave regime,” IEEE Trans. Microw. Theory Tech. 53(4), 1362–1368 (2005). [CrossRef]
  6. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401 (1836).
  7. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  8. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations,” IEEE Trans. Antenn. Propag. 14, 302 (1996).
  9. L. Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. 11, 196 (1881).
  10. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett. 16(11), 823–825 (1991). [CrossRef] [PubMed]
  11. J. Azaña, “Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers,” Opt. Lett. 30(3), 227–229 (2005). [CrossRef] [PubMed]
  12. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989). [CrossRef]
  13. L. Liu, “Lau cavity and phase locking of laser arrays,” Opt. Lett. 14(23), 1312–1314 (1989). [CrossRef] [PubMed]
  14. J. M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1995).
  15. M. S. Chapman, C. R. Ekstrom, T. D. Hammond, J. Schmiedmayer, B. E. Tannian, S. Wehinger, and D. E. Pritchard, “Near-field imaging of atom diffraction gratings: the atomic Talbot effect,” Phys. Rev. A 51(1), R14–R17 (1995). [CrossRef] [PubMed]
  16. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete Talbot effect in waveguide arrays,” Phys. Rev. Lett. 95(5), 053902 (2005). [CrossRef] [PubMed]
  17. Y. Wang, K. Zhou, X. Zhang, K. Yang, Y. Wang, Y. Song, and S. Liu, “Discrete plasmonic Talbot effect in subwavelength metal waveguide arrays,” Opt. Lett. 35(5), 685–687 (2010). [CrossRef] [PubMed]
  18. Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear Talbot effect,” Phys. Rev. Lett. 104(18), 183901 (2010). [CrossRef] [PubMed]
  19. M. R. Dennis, N. I. Zheludev, and F. J. García de Abajo, “The plasmon Talbot effect,” Opt. Express 15(15), 9692–9700 (2007). [CrossRef] [PubMed]
  20. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17(22), 19757–19762 (2009). [CrossRef] [PubMed]
  21. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90(7), 077405 (2003). [CrossRef] [PubMed]
  22. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B Condens. Matter 72(19), 193101 (2005). [CrossRef]
  23. R. Nielsen, M. Thoreson, W. Chen, A. Kristensen, J. Hvam, V. Shalaev, and A. Boltasseva, “Toward superlensing with metal-dielectric composites and multilayers,” Appl. Phys. B 100(1), 93–100 (2010). [CrossRef]
  24. Y. Xiong, Z. Liu, and X. Zhang, “Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers,” Appl. Phys. Lett. 93(11), 111116 (2008). [CrossRef]
  25. C. H. Gan and P. Lalanne, “Well-confined surface plasmon polaritons for sensing applications in the near-infrared,” Opt. Lett. 35(4), 610–612 (2010). [CrossRef] [PubMed]
  26. D. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43(9), 377–407 (1978). [CrossRef]
  27. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006). [CrossRef]
  28. J. Winthrop and C. R. Worthington, “Theory of Fresnel images. I. Plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55(4), 373 (1965). [CrossRef]
  29. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  30. H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006). [CrossRef] [PubMed]
  31. S. Rahman and H. Yang, “Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates,” Nano Lett. 3(4), 439–442 (2003). [CrossRef]
  32. K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay, and M. B. Johnson, “Fabrication of nanoring arrays by sputter redeposition using porous alumina templates,” Nano Lett. 4(1), 167–171 (2004). [CrossRef]
  33. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76(19), 2668 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited