OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15371–15379

Surface plasmon modes of a single silver nanorod: an electron energy loss study

Olivia Nicoletti, Martijn Wubs, N. Asger Mortensen, Wilfried Sigle, Peter A. van Aken, and Paul A. Midgley  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15371-15379 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an electron energy loss study using energy filtered TEM of spatially resolved surface plasmon excitations on a silver nanorod of aspect ratio 14.2 resting on a 30 nm thick silicon nitride membrane. Our results show that the excitation is quantized as resonant modes whose intensity maxima vary along the nanorod’s length and whose wavelength becomes compressed towards the ends of the nanorod. Theoretical calculations modelling the surface plasmon response of the silver nanorod-silicon nitride system show the importance of including retardation and substrate effects in order to describe accurately the energy dispersion of the resonant modes.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: June 24, 2011
Manuscript Accepted: July 12, 2011
Published: July 26, 2011

Olivia Nicoletti, Martijn Wubs, N. Asger Mortensen, Wilfried Sigle, Peter A. van Aken, and Paul A. Midgley, "Surface plasmon modes of a single silver nanorod: an electron energy loss study," Opt. Express 19, 15371-15379 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, 1980), Chap. 1.
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1986), Chaps. 2 and 3.
  3. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982). [CrossRef]
  4. D. Sarid and W. Channeler, Surface Plasmons Theory, Mathematica Modeling, and Applications (Cambridge University Press, 2010), Chap. 12.
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  6. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82(1), 209–275 (2010). [CrossRef]
  7. P. C. Tiemeijer, “Operation modes of a TEM monochromator,” Inst. Phys. Conf. Ser. (1999), Vol. 161, pp. 191–194.
  8. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. (Plenum Press, 1996), Chap. 2.
  9. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3(5), 348–353 (2007). [CrossRef]
  10. J. Nelayah, L. Gu, W. Sigle, C. T. Koch, I. Pastoriza-Santos, L. M. Liz-Marzán, and P. A. van Aken, “Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging,” Opt. Lett. 34(7), 1003–1005 (2009). [CrossRef] [PubMed]
  11. W. Sigle, J. Nelayah, C. T. Koch, and P. A. van Aken, “Electron energy losses in Ag nanoholes--from localized surface plasmon resonances to rings of fire,” Opt. Lett. 34(14), 2150–2152 (2009). [CrossRef] [PubMed]
  12. M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18(16), 165505 (2007). [CrossRef]
  13. B. Schaffer, U. Hohenester, A. Trügler, and F. Hofer, “High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy,” Phys. Rev. B 79(4), 041401 (2009). [CrossRef]
  14. M. NʼGom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008). [CrossRef] [PubMed]
  15. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11(4), 1499–1504 (2011). [CrossRef] [PubMed]
  16. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3(10), 3015–3022 (2009). [CrossRef] [PubMed]
  17. M.-W. Chu, V. Myroshnychenko, C. H. Chen, J.-P. Deng, C.-Y. Mou, and F. J. García de Abajo, “Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam,” Nano Lett. 9(1), 399–404 (2009). [CrossRef] [PubMed]
  18. D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Springer, 1996), Chaps. 37 and 38.
  19. C. T. Koch, W. Sigle, R. Höschen, M. Rühle, E. Essers, G. Benner, and M. Matijevic, “SESAM: exploring the frontiers of electron microscopy,” Microsc. Microanal. 12(06), 506–514 (2006). [CrossRef] [PubMed]
  20. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007). [CrossRef] [PubMed]
  21. E. R. Encina, E. M. Perassi, and E. A. Coronado, “Near-field enhancement of multipole plasmon resonances in Ag and Au nanowires,” J. Phys. Chem. A 113(16), 4489–4497 (2009). [CrossRef] [PubMed]
  22. N. Yamamoto, M. Nakano, and T. Suzuki, “Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams,” Surf. Interface Anal. 38(12-13), 1725–1730 (2006). [CrossRef]
  23. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007). [CrossRef] [PubMed]
  24. R. Gómez-Medina, N. Yamamoto, M. Nakano, and F. J. García de Abajo, “Mapping plasmons in nanoantennas via cathodoluminescence,” N. J. Phys. 10(10), 105009 (2008). [CrossRef]
  25. K. E. Korte, S. E. Skrabalak, and Y. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J. Mater. Chem. 18(4), 437–441 (2008). [CrossRef]
  26. The silver nanowires used in this study were purchased from the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. NRF is part of School of Engineering and Applied Science at Washington University in St. Louis.
  27. E. Essers, G. Benner, T. Mandler, S. Meyer, D. Mittmann, M. Schnell, and R. Höschen, “Energy resolution of an Omega-type monochromator and imaging properties of the MANDOLINE filter,” Ultramicroscopy 110(8), 971–980 (2010). [CrossRef]
  28. B. Schaffer, W. Grogger, and G. Kothleitner, “Automated spatial drift correction for EFTEM image series,” Ultramicroscopy 102(1), 27–36 (2004). [CrossRef] [PubMed]
  29. N. E. Christensen, “The band structure of silver and optical interband transitions,” Phys. Status Solidi B 54(2), 551–563 (1972). [CrossRef]
  30. B. E. Sernelius, Surface Modes in Physics (Wiley, 2001), Chap. 7.
  31. J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1999), Chap. 6.
  32. J. Grand, M. de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B 72(3), 033407 (2005). [CrossRef]
  33. W.-B. Ewe, H.-S. Chu, E.-P. Li, and B. S. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys., A Mater. Sci. Process. 100(2), 315–319 (2010). [CrossRef]
  34. R. F. Egerton, “Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy,” Ultramicroscopy 107(8), 575–586 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited