OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15452–15458

Precipitation of silicon nanoclusters by laser direct-write

Waqas Mustafeez, Daeho Lee, Costas Grigoropoulos, and Alberto Salleo  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15452-15458 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (825 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ability to use a laser to direct-write tracks of localized emission enhancement in PECVD-deposited Silicon rich oxide (SRO) films is demonstrated. For this purpose, 400nm thick SRO films with varying excess Si content were irradiated with loosely focused 355nm, 12ps pulses at 80MHz while being translated at 2mm/s. Mapping of areas irradiated with energies between 4.7nJ and 5.5nJ/pulse exhibits regions with the largest emission enhancement. Raman and photoluminescence (PL) measurements suggest precipitation of amorphous and crystalline Si nanoclusters. In the most emissive regions, the PL efficiency of the laser-annealed films was ~70% of that obtained by standard oven-annealing processes. Stress in Si crystals in some areas is identified as leading to quenching of the PL and is hypothesized to be caused by the densification of SRO matrix.

© 2011 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 24, 2011
Revised Manuscript: June 3, 2011
Manuscript Accepted: June 6, 2011
Published: July 28, 2011

Waqas Mustafeez, Daeho Lee, Costas Grigoropoulos, and Alberto Salleo, "Precipitation of silicon nanoclusters by laser direct-write," Opt. Express 19, 15452-15458 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “Optical interconnects to silicon,” Selected. Topics. In Quantum. Electronics. IEEE. Journal. Of. DOI - 10 1109/2944. 902184. 6, 1312–1317 (2000).
  2. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000). [CrossRef] [PubMed]
  4. H. Xia, Y. L. He, L. C. Wang, W. Zhang, X. N. Liu, X. K. Zhang, D. Feng, and H. E. Jackson, “Phonon mode study of Si nanocrystals using micro-Raman spectroscopy,” J. Appl. Phys. 78(11), 6705–6708 (1995). [CrossRef]
  5. S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, “Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing,” Appl. Phys. Lett. 70(10), 1207–1209 (1997). [CrossRef]
  6. C. F. Lin, W. T. Tseng, and M. S. Feng, “Formation and characteristics of silicon nanocrystals in plasma-enhanced chemical-vapor-deposited silicon-rich oxide,” J. Appl. Phys. 87(6), 2808–2815 (2000). [CrossRef]
  7. B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodriguez, J. R. Morante, and C. Bonafos, “Correlation between structural and optical properties of Si nanocrystals embedded in SiO[sub 2]: The mechanism of visible light emission,” Appl. Phys. Lett. 77(20), 3143–3145 (2000). [CrossRef]
  8. B. Garrido, M. López, A. Pérez-Rodríguez, C. García, P. Pellegrino, R. Ferré, J. A. Moreno, J. R. Morante, C. Bonafos, M. Carrada, A. Claverie, J. de la Torre, and A. Souifi, “Optical and electrical properties of Si-nanocrystals ion beam synthesized in SiO2,” Nucl. Instrum. Methods Phys. Res. B 216, 213–221 (2004). [CrossRef]
  9. H. Rinnert, M. Vergnat, and A. Burneau, “Evidence of light-emitting amorphous silicon clusters confined in a silicon oxide matrix,” J. Appl. Phys. 89(1), 237–243 (2001). [CrossRef]
  10. M. Molinari, H. Rinnert, and M. Vergnat, “Effects of the amorphous-crystalline transition on the luminescence of quantum confined silicon nanoclusters,” EPL 66(5), 674–679 (2004) (Europhysics Letters). [CrossRef]
  11. R. J. Walters, J. Kalkman, A. Polman, H. A. Atwater, and M. J. A. de Dood, “Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO_{2},” Phys. Rev. B 73(13), 132302 (2006). [CrossRef]
  12. R. D. Kekatpure and M. L. Brongersma, “Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity,” Nano Lett. 8(11), 3787–3793 (2008). [CrossRef] [PubMed]
  13. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89(22), 221101 (2006). [CrossRef]
  14. K. S. Cho, N. Park, T. Kim, K. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86(7), 071909 (2005). [CrossRef]
  15. A. H. Nejadmalayeri, P. Scrutton, J. Mak, A. S. Helmy, P. R. Herman, J. Burghoff, S. Nolte, A. Tünnermann, and J. Kaspar, “Solid phase formation of silicon nanocrystals by bulk ultrafast laser-matter interaction,” Opt. Lett. 32(24), 3474–3476 (2007). [CrossRef] [PubMed]
  16. L. Khriachtchev, M. Rasanen, and S. Novikov, “Laser-controlled stress of Si nanocrystals in a free-standing Si/SiO[sub 2] superlattice,” Appl. Phys. Lett. 88(1), 013102 (2006). [CrossRef]
  17. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001). [CrossRef] [PubMed]
  18. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15(17), 10842–10854 (2007). [CrossRef] [PubMed]
  19. S. Cheylan and R. G. Elliman, “Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett. 78(9), 1225–1227 (2001). [CrossRef]
  20. M. López, B. Garrido, C. Garcia, P. Pellegrino, A. Perez-Rodriguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, “Elucidation of the surface passivation role on the photoluminescence emission yield of silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 80(9), 1637–1639 (2002). [CrossRef]
  21. L. Vaccaro, M. Cannas, and R. Boscaino, “Phonon coupling of non-bridging oxygen hole center with the silica environment: Temperature dependence of the 1.9 eV emission spectra,” J. Lumin. 128(7), 1132–1136 (2008). [CrossRef]
  22. A. Morales, J. Barreto, C. Domínguez, M. Riera, M. Aceves, and J. Carrillo, “Comparative study between silicon-rich oxide films obtained by LPCVD and PECVD,” Physica E 38(1-2), 54–58 (2007). [CrossRef]
  23. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004). [CrossRef]
  24. N. Daldosso, G. Das, S. Larcheri, G. Mariotto, G. Dalba, L. Pavesi, A. Irrera, F. Priolo, F. Iacona, and F. Rocca, “Silicon nanocrystal formation in annealed silicon-rich silicon oxide films prepared by plasma enhanced chemical vapor deposition,” J. Appl. Phys. 101(11), 113510 (2007). [CrossRef]
  25. I. D. Wolf, “Stress measurements in Si microelectronics devices using Raman spectroscopy,” J. Raman Spectrosc. 30(10), 877–883 (1999). [CrossRef]
  26. G. Faraci, S. Gibilisco, P. Russo, A. R. Pennisi, and S. La Rosa, “Modified Raman confinement model for Si nanocrystals,” Phys. Rev. B 73(3), 033307 (2006). [CrossRef]
  27. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement,” Appl. Phys. Lett. 80(25), 4834–4836 (2002). [CrossRef]
  28. F. Vega, J. Armengol, V. Diez-Blanco, J. Siegel, J. Solis, B. Barcones, A. Perez-Rodriguez, and P. Loza-Alvarez, “Mechanisms of refractive index modification during femtosecond laser writing of waveguides in alkaline lead-oxide silicate glass,” Appl. Phys. Lett. 87(2), 021109 (2005). [CrossRef]
  29. L. Huang and J. Kieffer, “Anomalous thermomechanical properties and laser-induced densification of vitreous silica,” Appl. Phys. Lett. 89(14), 141915 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited