OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15483–15489

The Goos-Hänchen effect for surface plasmon polaritons

Felix Huerkamp, Tamara A. Leskova, Alexei A. Maradudin, and Björn Baumeier  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15483-15489 (2011)
http://dx.doi.org/10.1364/OE.19.015483


View Full Text Article

Enhanced HTML    Acrobat PDF (1110 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By means of an impedance boundary condition and numerical solution of integral equations for the scattering amplitudes to which its use gives rise, we study as a function of its angle of incidence the reflection of a surface plasmon polariton beam propagating on a metal surface whose dielectric function is ɛ1(ω) when it is incident on a planar interface with a coplanar metal surface whose dielectric function is ɛ2(ω). When the surface of incidence is optically more dense than the surface of scattering, i.e. when |ɛ2(ω)| ≫ |ɛ1(ω)|, the reflected beam undergoes a lateral displacement whose magnitude is several times the wavelength of the incident beam. This displacement is the surface plasmon polariton analogue of the Goos-Hänchen effect. Since this displacement is sensitive to the dielectric properties of the surface, this effect can be exploited to sense modifications of the dielectric environment of a metal surface, e.g. due to adsorption of atomic or molecular layers on it.

© 2011 OSA

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(290.5825) Scattering : Scattering theory

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 24, 2011
Revised Manuscript: June 21, 2011
Manuscript Accepted: June 28, 2011
Published: July 28, 2011

Citation
Felix Huerkamp, Tamara A. Leskova, Alexei A. Maradudin, and Björn Baumeier, "The Goos-Hänchen effect for surface plasmon polaritons," Opt. Express 19, 15483-15489 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15483


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436, 333–346 (1947). [CrossRef]
  2. K. Artmann, “Berechnung der Seitenversetzung des totalreflektierten Strahles,” Ann. Phys. 437, 87–102 (1948). [CrossRef]
  3. H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure (vol 96, pg 073907, 2006),” Phys. Rev. Lett. 96, 073907 (2006). [CrossRef] [PubMed]
  4. H. Lezec, J. Dionne, and H. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007). [CrossRef] [PubMed]
  5. M. Dennis, N. Zheludev, and F. Garcia de Abajo, “The plasmon Talbot effect,” Opt. Express 15, 9692–9700 (2007). [CrossRef] [PubMed]
  6. A. Maradudin and T. Leskova, “The Talbot effect for a surface plasmon polariton,” New J. Phys. 11, 033004 (2009). [CrossRef]
  7. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76, 2164–2166 (2000). [CrossRef]
  8. B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Cloaking from surface plasmon polaritons by a circular array of point scatterers,” Phys. Rev. Lett. 103, 246803 (2009). [CrossRef]
  9. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett. 10, 1991–1997 (2010). [CrossRef] [PubMed]
  10. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010). [CrossRef] [PubMed]
  11. J. Renger, M. Kadic, G. Dupont, S. Acimovic, S. Guenneau, and R. Quidant, “Hidden progress: broadband plasmonic invisibility,” Opt. Express 18, 15757–15768 (2010). [CrossRef] [PubMed]
  12. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429 (2007). [CrossRef]
  13. A. A. Maradudin, “The impedance boundary condition at a two-dimensional rough metal surface,” Optics Commun. 116, 452 – 467 (1995). [CrossRef]
  14. K. Atkinson, “The numerical solution of Fredholm integral equations of the second kind with singular kernels,” Numerische Mathematik 19, 248–259 (1972). [CrossRef]
  15. F. Huerkamp, T. A. Leskova, and A. A. Maradudin, “Surface plasmon polariton analogues of volume electromagnetic wave effects,” Proc. SPIE 7467, 74670H (2009). [CrossRef]
  16. Y. A. Nikitin, G. Brucoli, F. J. García-Vidal, and L. Martín-Moreno, “Scattering of surface plasmon polaritons by impedance barriers: Dependence on angle of incidence,” Phys. Rev. B 77, 195441 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited