OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15490–15505

Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling

Prashant P. Baveja, Benjamin Kögel, Petter Westbergh, Johan S. Gustavsson, Åsa Haglund, Drew N. Maywar, Govind P. Agrawal, and Anders Larsson  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15490-15505 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use an empirical model together with experimental measurements for studying mechanisms contributing to thermal rollover in vertical-cavity surface-emitting lasers (VCSELs). The model is based on extraction of the temperature dependence of threshold current, internal quantum efficiency, internal optical loss, series resistance and thermal impedance from measurements of output power, voltage and lasing wavelength as a function of bias current over an ambient temperature range of 15–100°C. We apply the model to an oxide-confined, 850-nm VCSEL, fabricated with a 9-μm inner-aperture diameter and optimized for high-speed operation, and show for this specific device that power dissipation due to linear power dissipation (sum total of optical absorption, carrier thermalization, carrier leakage and spontaneous carrier recombination) exceeds power dissipation across the series resistance (quadratic power dissipation) at any ambient temperature and bias current. We further show that the dominant contributors to self-heating for this particular VCSEL are quadratic power dissipation, internal optical loss, and carrier leakage. A rapid reduction of the internal quantum efficiency at high bias currents (resulting in high temperatures) is identified as being the major cause of thermal rollover. Our method is applicable to any VCSEL and is useful for identifying the mechanisms limiting the thermal performance of the device and to formulate design strategies to ameliorate them.

© 2011 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(140.6810) Lasers and laser optics : Thermal effects
(200.4650) Optics in computing : Optical interconnects
(230.1150) Optical devices : All-optical devices
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:

Original Manuscript: May 23, 2011
Revised Manuscript: July 4, 2011
Manuscript Accepted: July 11, 2011
Published: July 28, 2011

Prashant P. Baveja, Benjamin Kögel, Petter Westbergh, Johan S. Gustavsson, Åsa Haglund, Drew N. Maywar, Govind P. Agrawal, and Anders Larsson, "Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling," Opt. Express 19, 15490-15505 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Hofmann, “High-speed buried tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. J. 2, 802–815 (2010). [CrossRef]
  2. R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable high-CW-power high-speed 980-nm VCSEL arrays,” IEEE J. Quantum Electron. 46, 1590–1596 (2010). [CrossRef]
  3. P. Westbergh, J. Gustavsson, Å. Haglund, M. Skold, A. Joel, and A. Larsson, “High speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009). [CrossRef]
  4. J. S. Harris, T. O’Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol. 26, 014010 (2011). [CrossRef]
  5. B. Ciftcioglu, R. Berman, J. Zhang, Z. Darling, S. Wang, J. Hu, J. Xue, A. Garg, M. Jain, I. Savidis, D. Moore, M. Huang, E. G. Friedman, G. Wicks, and H. Wu, “A 3-D integrated intrachip free-space optical interconnect for many-core chips,” IEEE Photon. Technol. Lett. 23, 164–166 (2011). [CrossRef]
  6. I. A. Young, E. M. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical technology for energy efficient I/O in high performance computing,” IEEE Commun. Mag. 48, 184–191 (2010). [CrossRef]
  7. Y. Ding, W. J. Fan, D. W. Xu, C. Z. Tong, Y. Liu, and L. J. Zha, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98, 773–778 (2010). [CrossRef]
  8. Å. Haglund, J. S. Gustavsson, J. Vukušsić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,”IEEE Photon. Technol. Lett. 16, 368–370 (2004). [CrossRef]
  9. C. Ji, J. Wang, D. Söderström, and L. Giovane, “20-Gb/s 850-nm oxide VCSEL operating at 25°C–70°C,” IEEE Photon. Technol. Lett. 22, 670–672 (2010). [CrossRef]
  10. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon life-time on high speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. (accepted for publication).
  11. A. N. Al-Omari and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink,” IEEE Photon. Technol. Lett. 17, 1225–1227 (2005). [CrossRef]
  12. Y. Ou, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon. Technol. Lett. 21, 1840–1842 (2009). [CrossRef]
  13. Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture, vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 1–12 (2009).
  14. A. N. Al-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004). [CrossRef]
  15. S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010). [CrossRef]
  16. Y. Liu, W.-C. Ng, K. D. Choquette, and K. Hess, “Numerical investigation of self-heating effects of oxide-confined vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 15–25 (2005). [CrossRef]
  17. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, and K. W. Wyatt, “A simple rate-equation-based thermal VCSEL model,” J. Lightwave Technol. 17, 865–872 (1999). [CrossRef]
  18. J. W. Scott, R. S. Geels, S. W. Corzine, and L. A. Coldren, “Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance,” IEEE J. Quantum Electron. 29, 1295–1308 (1993). [CrossRef]
  19. G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta, and A. Y. Cho, “Performance of gain-guided surface emitting lasers with semiconductor distributed bragg reflectors,” IEEE J. Quantum Electron. 27, 1377–1385 (1991). [CrossRef]
  20. W. Nakwaski and M. Osinski, “On the thermal resistance of vertical-cavity surface-emitting lasers,” Opt. Quantum Electron. 29, 883–892 (1997). [CrossRef]
  21. P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15, 828–837 (2009). [CrossRef]
  22. C. Wilmsen, H. Temkin, and L. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications , (Cambridge Univ. Press, 1999).
  23. C. J. Chang-Hasnain, C. E. Zah, G. Hasnain, J. P. Harbison, L. T. Florez, N. G. Stoffel, and T. P. Lee, “Effect of operating electric power on the dynamic behavior of quantum well vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 58, 1247–1249 (1991). [CrossRef]
  24. W. H. Knox, D. S. Chemla, G. Livescu, J. E. Cunningham, and J. E. Henry, “Femtosecond carrier thermalization in dense fermi seas,” Phys. Rev. Lett. 61, 1290–1293 (1988). [CrossRef] [PubMed]
  25. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Intergrated Circuits (Wiley, 1995).
  26. Y.-A. Chang, J.-R. Chen, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, “Theoretical and experimental analysis on InAlGaAs/AlGaAs active region of 850-nm vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 24, 536–543 (2006). [CrossRef]
  27. I. Vurgaftman, J. R. Meyer, and L.-R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” Appl. Phys. Rev. 89, 5815–5875 (2001). [CrossRef]
  28. D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Measurement of internal quantum efficiency and losses in vertical cavity surface emitting lasers,” Appl. Phys. Lett. 66, 1720–1722 (1995). [CrossRef]
  29. G. R. Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483–1485 (1995). [CrossRef] [PubMed]
  30. A. Larsson, P. Westbergh, J. Gustavsson, Å. Haglund, and B. Kögel, “High-speed VCSELs for short reach communication,” Semicond. Sci. Technol. 26, 014017 (2011). [CrossRef]
  31. L. F. Lester, S. S. O’Keefe, W. J. Schaff, and L. F. Eastman, “Multiquantum well strained-layer lasers with improved low frequency response and very low damping,” Electron. Lett. 28, 383–385 (1992). [CrossRef]
  32. K. L. Lear and R. P. Schneider, “Uniparabolic mirror grading for vertical cavity surface emitting lasers,” Appl. Phys. Lett. 68, 605–607 (1996). [CrossRef]
  33. Y.-A. Chang, T.-S. Ko, J.-R. Chen, F.-I Lai, C.-L. Yu, I.-T. Wu, H.-C. Kuo, Y.-K. Kuo, L.-W. Laih, L.-H. Laih, T.-C. Lu, and S.-C. Wang, “The carrier blocking effect on 850 nm In-AlGaAs/AlGaAs vertical-cavity surface-emitting lasers,” Semicond. Sci. Technol. 21, 1488–1494 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited