OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15506–15515

The rotating-crystal method in femtosecond X-ray diffraction

B. Freyer, J. Stingl, F. Zamponi, M. Woerner, and T. Elsaesser  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15506-15515 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1417 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first implementation of the rotating-crystal method in femtosecond X-ray diffraction. Applying a pump-probe scheme with 100 fs hard X-ray probe pulses from a laser-driven plasma source, the novel technique is demonstrated by mapping structural dynamics of a photoexcited bismuth crystal via changes of the diffracted intensity on a multitude of Bragg reflections. The method is compared to femtosecond powder diffraction and to Bragg diffraction from a crystal with stationary orientation.

© 2011 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(320.2250) Ultrafast optics : Femtosecond phenomena
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
X-ray Optics

Original Manuscript: May 23, 2011
Revised Manuscript: June 23, 2011
Manuscript Accepted: July 5, 2011
Published: July 28, 2011

B. Freyer, J. Stingl, F. Zamponi, M. Woerner, and T. Elsaesser, "The rotating-crystal method in femtosecond X-ray diffraction," Opt. Express 19, 15506-15515 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Colleted., “Dynamical structural science,” Acta Crystallogr., Sect. A 66, 133–280 (2010). [CrossRef] [PubMed]
  2. A. Rousse, C. Rischel, and J. C. Gauthier, “Colloquium: femtosecond x-ray crystallography,” Rev. Mod. Phys. 73, 17–31 (2001). [CrossRef]
  3. T. Elsaesser and M. Woerner, “Photoinduced structural dynamics of polar solids studied by femtosecond x-ray diffraction,” Acta Crystallogr., Sect. A 66, 168–178 (2010). [CrossRef] [PubMed]
  4. W. L. Bragg, “The structure of some crystals as indicated by their diffraction of x-rays,” Proc. R. Soc. London, Ser. A 89, 248–277 (1913). [CrossRef]
  5. C. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Forster, J.-L. Martin, and A. Antonetti, “Femtosecond time-resolved X-ray diffraction from laser-heated organic films,” Nature 390, 490–492 (1997). [CrossRef]
  6. C. Rose-Petruck, R. Jiminez, T. Guo, A. Cavalleri, C. Siders, J. A. Squier, B. C. Walker, and K. R. Wilson, “Picosecond millianstrom lattice dynamics measured by ultrafast x-ray diffraction,” Nature 398, 310–312 (1999). [CrossRef]
  7. E. Collet, M.-H. Leme-Cailleau, M. Buron-Le Cointe, H. Cailleau, M. Wulff, T. Luty, S.-Y. Koshihara, M. Meyer, L. Toupet, P. Rabiller, and S. Techert, “Laser-induced ferroelectric structural order in an organic charge-transfer crystal,” Science 300, 612–615 (2003). [CrossRef] [PubMed]
  8. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, and D. von der Linde, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003). [CrossRef] [PubMed]
  9. M. Bargheer, N. Zhavoronkov, Y. Gritsai, J. C. Woo, D. S. Kim, M. Woerner, and T. Elsaesser, “Coherent atomic motions in a nanostructure studied by femtosecond x-ray diffraction,” Science 306, 1771–1773 (2004). [CrossRef] [PubMed]
  10. D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, A. D. Murray, A. J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, T. Tschentscher, D. von der Linde, and J. B. Hastings, “Ultrafast bond softening in bismuth: mapping a solid’s interatomic potential with x-rays,” Science 315, 633–636 (2007). [CrossRef] [PubMed]
  11. C. v. Korff Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, and M. Alexe, “Coupled ultrafast lattice and polarization dynamics in ferroelectric nanolayers,” Phys. Rev. Lett. 98, 257601 (2007). [CrossRef]
  12. S. L. Johnson, P. Beaud, C. J. Milne, F. S. Krasniqi, E. S. Zijlstra, M. E. Garcia, M. Kaiser, D. Grolimund, R. Abela, and G. Ingold, “Nanoscale depth-resolved coherent femtosecond motion in laser-excited bismuth,” Phys. Rev. Lett. 100, 155501 (2008). [CrossRef] [PubMed]
  13. F. Zamponi, Z. Ansari, M. Woerner, and T. Elsaesser, “Femtosecond powder diffraction with a laser-driven hard x-ray source,” Opt. Express 18, 947–961 (2010). [CrossRef] [PubMed]
  14. M. Woerner, F. Zamponi, Z. Ansari, J. Dreyer, B. Freyer, M. Premont-Schwarz, and T. Elsaesser, “Concerted electron and proton transfer in ionic crystals mapped by femtosecond x-ray powder diffraction,” J. Chem. Phys. 133, 064509 (2010). [CrossRef] [PubMed]
  15. B. E. Warren, X-ray Diffraction (Dover Publications, 1990).
  16. C. Giacovazzo, Fundamentals of Crystallography (Oxford University Press, 2002). [PubMed]
  17. U. W. Arndt, J. N. Champness, R. P. Phizackerley, and A. J. Wonacott, “A single-crystal oscillation camera for large unit cells,” J. Appl. Cryst. 6, 457–463 (1973). [CrossRef]
  18. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media , 2nd ed. (Butterworth-Heinenann, 1984).
  19. N. Zhavoronkov, Y. Gritsai, M. Bargheer, M. Woerner, Th. Elsaesser, F. Zamponi, I. Uschmann, and E. Förster, “Microfocus Cu Kα source for femtosecond x-ray science,” Opt. Lett. 30, 1737–1739 (2005). [CrossRef] [PubMed]
  20. M. Bargheer, N. Zhavoronkov, R. Bruch, H. Legall, H. Stiel, M. Woerner, and T. Elsaesser, “Comparison of focusing optics for femtosecond X-ray diffraction,” Appl. Phys. B 80, 715–719 (2005). [CrossRef]
  21. It is important to note that the experimentally observed damage does not change the X-ray diffraction pattern, i.e., the crystal structure, but the surface quality of the single crystal and, thus, the coupling of the optical pump beam into the crystal.
  22. S. L. Johnson, P. Beaud, E. Vorobeva, C. J. Milne, E. D. Murray, S. Fahy, and G. Ingold, “Directly observing squeezed phonon states with femtosecond x-ray diffraction,” Phys. Rev. Lett. 102, 175503 (2009). [CrossRef] [PubMed]
  23. S. L. Johnson, P. Beaud, E. Vorobeva, C. J. Milne, É. D. Murray, S. Fahy, and G. Ingold, “Non-equilibrium phonon dynamics studied by grazing-incidence femtosecond X-ray crystallography,” Acta Crystallogr., Sect. A 66, 157–167 (2010). [CrossRef] [PubMed]
  24. W. Lu, M. Nicoul, U. Shymanovich, A. Tarasevitch, M. Kammler, M. Horn von Hoegen, D. von der Linde, and K. Sokolowski-Tinten, “Transient reversal of a Peierls-transition: Extreme phonon softening in laser-excited Bismuth,” in Ultrafast Phenomena XVII , M. Chergui, D. Jonas, E. Riedle, R. Schoenlein, and A. Taylor, eds. (Oxford University Press, 2011).
  25. J. B. Woodhouse, A. L. A. Fields, and I. A. Bucklow, “X-ray mass absorption coefficients for gold, lead and bismuth in the range 1–10 Å,” J. Phys. D: Appl. Phys, 7, 483–489 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited