OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 16 — Aug. 1, 2011
  • pp: 15574–15583

Highly transparent sapphire micro-grating structures with large diffuse light scattering

Yeong Hwan Ko and Jae Su Yu  »View Author Affiliations


Optics Express, Vol. 19, Issue 16, pp. 15574-15583 (2011)
http://dx.doi.org/10.1364/OE.19.015574


View Full Text Article

Enhanced HTML    Acrobat PDF (1500 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The highly transparent micro-grating structures (MGSs) of sapphire substrate with large diffuse light scattering were theoretically and experimentally studied. From the finite difference time domain simulation, it was found that the degree of diffuse light scattering is strongly dependent on the size of grating structures. For a highly transparent property, the sapphire MGSs were optimally designed by the theoretical calculations using the rigorous coupled wave analysis method. The order of taper, geometry (i.e., width and height), and pitch length of MGSs were optimized to maximize their average total transmittance over a wide wavelength range of 300-1800 nm. Additionally, the influence of the deposition of low-refractive index material such as SiO2 onto sapphire MGSs on the transmittance characteristics was investigated. To verify experimentally the feasibility, the sapphire MGSs were fabricated by the conventional lithography and dry etching processes. The SiO2 deposited sapphire MGS exhibited a further increase in the total transmittance due to its relatively more graded refractive index profile while maintaining a significantly enhanced diffuse light scattering. The experimental data were in a reasonable agreement with the theoretical results.

© 2011 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(220.2740) Optical design and fabrication : Geometric optical design
(310.1210) Thin films : Antireflection coatings

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 19, 2011
Published: July 28, 2011

Citation
Yeong Hwan Ko and Jae Su Yu, "Highly transparent sapphire micro-grating structures with large diffuse light scattering," Opt. Express 19, 15574-15583 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-16-15574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. F. Hartman and T. K. Gaylord, “Antireflection gold surface-relief gratings: experimental characteristics,” Appl. Opt. 27(17), 3738–3743 (1988). [CrossRef] [PubMed]
  2. K. Kintaka, J. Nishii, A. Mizutani, H. Kikuta, and H. Nakano, “Antireflection microstructures fabricated upon fluorine-doped SiO2 films,” Opt. Lett. 26(21), 1642–1644 (2001). [CrossRef] [PubMed]
  3. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226(1-6), 81–88 (2003). [CrossRef]
  4. S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun. 31(6), 539–544 (2010). [CrossRef] [PubMed]
  5. M. I. Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001). [CrossRef] [PubMed]
  6. O. Deparis, N. Khuzayim, A. Parker, and J. P. Vigneron, “Assessment of the antireflection property of moth wings by three-dimensional transfer-matrix optical simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(4 Pt 1), 041910 (2009). [CrossRef] [PubMed]
  7. Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, and L. Chi, “Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings,” Nano Res. 3(7), 520–527 (2010). [CrossRef]
  8. W. Śmigaj, B. Gralak, R. Pierre, and G. Tayeb, “Antireflection gratings for a photonic-crystal flat lens,” Opt. Lett. 34(22), 3532–3534 (2009). [CrossRef] [PubMed]
  9. J. M. Park, S. G. Lee, H. R. Park, and M. H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18(12), 13083–13093 (2010). [CrossRef] [PubMed]
  10. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010). [CrossRef] [PubMed]
  11. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297–305 (2011). [CrossRef] [PubMed]
  12. S. Walheim, E. Schaffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999). [CrossRef] [PubMed]
  13. K. Crabtree and R. A. Chipman, “Subwavelength-grating-induced wavefront aberrations: a case study,” Appl. Opt. 46(21), 4549–4554 (2007). [CrossRef] [PubMed]
  14. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express 18(12), 13063–13071 (2010). [CrossRef] [PubMed]
  15. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010). [CrossRef]
  16. Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: From understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011). [CrossRef] [PubMed]
  17. J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells 94(3), 629–633 (2010). [CrossRef]
  18. J. Jonsson and F. Nikolaje, “Investigation of optical properties of injection molded subwavelength gratings,” Proc. SPIE 4779, 23–30 (2002). [CrossRef]
  19. D. L. Brundrett, T. K. Gaylord, and E. N. Glytsis, “Polarizing mirror/absorber for visible wavelengths based on a silicon subwavelength grating: design and fabrication,” Appl. Opt. 37(13), 2534–2541 (1998). [CrossRef] [PubMed]
  20. W. Ge, C. Wang, Y. Xue, B. Cao, B. Zhang, and K. Xu, “Tunable ultra-deep subwavelength photolithography using a surface plasmon resonant cavity,” Opt. Express 19(7), 6714–6723 (2011). [CrossRef] [PubMed]
  21. C. C. Yu, Y. T. Chen, D. H. Wan, H. L. Chen, S. L. Ku, and Y. F. Chou, “Using one-step, dual-side nanoimprint lithography to fabricate low-cost, highly flexible wave plates exhibiting broadband antireflection,” J. Electrochem. Soc. 158(6), J195–J199 (2011). [CrossRef]
  22. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology 8(2), 53–56 (1997). [CrossRef]
  23. Z. Jehl, J. Rousset, F. Donsanti, G. Renou, N. Naghavi, and D. Lincot, “Electrodeposition of ZnO nanorod arrays on ZnO substrate with tunable orientation and optical properties,” Nanotechnology 21(39), 395603 (2010). [CrossRef] [PubMed]
  24. S. S. Lo, D. Haung, and D. J. Jan, “Haze ratio enhancement using a closely packed ZnO monolayer structure,” Opt. Express 18(2), 662–669 (2010). [CrossRef] [PubMed]
  25. C. Haase and H. Stiebig, “Thin-flm silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007). [CrossRef]
  26. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95(5), 053115 (2009). [CrossRef]
  27. R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, Ph. Masclet, C. Perret, and P. Schiavone, “Design and fabrication of infrared antireflecting bi-periodic micro-structured surfaces,” Proc. SPIE 6992, 69920H (2008). [CrossRef]
  28. S. L. Chuang, Physics of optoelectronic devices, (John Wiley & Sons. Inc. 1995).
  29. S. L. Chuang and J. A. Kong, “Wave scattering and guidance by dielectric waveguides with periodic surfaces,” J. Opt. Soc. Am. 73(5), 669–679 (1983). [CrossRef]
  30. R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17(24), 21590–21597 (2009). [CrossRef] [PubMed]
  31. W. Zhou, M. Tao, L. Chen, and H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” J. Appl. Phys. 102(10), 103105 (2007). [CrossRef]
  32. D. W. Kang, S. H. Kuk, K. S. Ji, S. W. Ahn, and M. K. Han, “Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,” Jpn. J. Appl. Phys. 49(3), 031101 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited