OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15711–15719

Correlations of polarization in random electro-magnetic fields

J. Broky and A. Dogariu  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15711-15719 (2011)
http://dx.doi.org/10.1364/OE.19.015711


View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Random electromagnetic fields have a number of distinctive statistical properties that may depend on their origin. We show here that when two mutually coherent fields are overlapped, the individual characteristics are not completely lost. In particular, we demonstrate that if assumptions can be made regarding the coherence properties of one of the fields, both the relative average strength and the field correlation length of the second one can be retrieved using higher-order polarization properties of the combined field.

© 2011 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(290.5855) Scattering : Scattering, polarization

ToC Category:
Physical Optics

History
Original Manuscript: June 17, 2011
Manuscript Accepted: July 7, 2011
Published: August 1, 2011

Citation
J. Broky and A. Dogariu, "Correlations of polarization in random electro-magnetic fields," Opt. Express 19, 15711-15719 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15711


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Speckle Phenomena in Optics, 1st ed. (Roberts & Co., 2007).
  2. P. Sebbah, O. Legrand, and A. Z. Genack, “Fluctuations in photon local delay time and their relation to phase spectra in random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59(2), 2406–2411 (1999). [CrossRef]
  3. M. J. Stephen and G. Cwilich, “Intensity correlation functions and fluctuations in light scattered from a random medium,” Phys. Rev. Lett. 59(3), 285–287 (1987). [CrossRef] [PubMed]
  4. P. A. Lee and A. D. Stone, “Universal conductance fluctuations in metals,” Phys. Rev. Lett. 55(15), 1622–1625 (1985). [CrossRef] [PubMed]
  5. I. Freund and R. Berkovits, “Surface reflections and optical transport through random media: Coherent backscattering, optical memory effect, frequency, and dynamical correlations,” Phys. Rev. B Condens. Matter 41(1), 496–503 (1990). [CrossRef] [PubMed]
  6. A. H. Gandjbakhche and G. H. Weiss, “Random walk and diffusion-like model of photon migration in turbid media,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, 1995), pp. 333–402.
  7. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988). [CrossRef] [PubMed]
  8. I. Freund, M. Kaveh, R. Berkovits, and M. Rosenbluh, “Universal polarization correlations and microstatistics of optical waves in random media,” Phys. Rev. B Condens. Matter 42(4), 2613–2616 (1990). [CrossRef] [PubMed]
  9. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989). [CrossRef] [PubMed]
  10. T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1984).
  11. A. Dogariu and E. Wolf, “Coherence theory of pairs of correlated wave fields,” J. Mod. Opt. 50(11), 1791–1796 (2003). [CrossRef]
  12. B. Ruth, “Superposition of Two Dynamic Speckle Patterns–An application to Non-contact Blood Flow Measurements,” J. Mod. Opt. 34(2), 257–273 (1987). [CrossRef]
  13. D. Burckel, S. H. Zaidi, A. Frauenglass, M. Lang, and S. R. J. Brueck, “Subfeature speckle interferometry,” Opt. Lett. 20(3), 315–317 (1995). [CrossRef] [PubMed]
  14. G. G. Stokes, Trans. Cambridge Philos Soc. 9 (1852) 399, in Polarized Light, W. Swindell, ed., (Dowden, Hutchinson, and Ross, Inc., 1975).
  15. E. Wolf, “Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?” Opt. Lett. 33(7), 642–644 (2008). [CrossRef] [PubMed]
  16. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  17. B. Shapiro, “Large intensity fluctuations for wave propagation in random media,” Phys. Rev. Lett. 57(17), 2168–2171 (1986). [CrossRef] [PubMed]
  18. M. J. Stephen and G. Cwilich, “Intensity correlation functions and fluctuations in light scattered from a random medium,” Phys. Rev. Lett. 59(3), 285–287 (1987). [CrossRef] [PubMed]
  19. H. Fuji, T. Asakura, and Y. Shindo, “Measurement of surface roughness properties by means of laser speckle techniques,” Opt. Commun. 16(1), 68–72 (1976). [CrossRef]
  20. J. Broky and A. Dogariu, “Complex degree of mutual polarization in randomly scattered fields,” Opt. Express 18(19), 20105–20113 (2010). [CrossRef] [PubMed]
  21. J. Ellis and A. Dogariu, “Complex degree of mutual polarization,” Opt. Lett. 29(6), 536–538 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited