OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15770–15776

Nanofibre fabrication by femtosecond laser ablation of silica glass

Krishnan Venkatakrishnan, Dheeraj Vipparty, and Bo Tan  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15770-15776 (2011)
http://dx.doi.org/10.1364/OE.19.015770


View Full Text Article

Enhanced HTML    Acrobat PDF (1057 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: This article presents a fabrication technique for generating densely populated and randomly oriented silica nanofibres by direct ablation of silica glass using a femtosecond laser with 12.4 MHz repetition rate and a pulse width of 214 fs, under ambient conditions. Four types of nanofibres with diameters ranging from a few tens of nanometers to a few hundreds of nanometers were formed. Some fibers reach lengths of 10 mm. The possible mechanisms for fibre formation have been explored.

© 2011 OSA

OCIS Codes
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3390) Lasers and laser optics : Laser materials processing
(140.3510) Lasers and laser optics : Lasers, fiber
(140.7090) Lasers and laser optics : Ultrafast lasers
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: April 7, 2011
Revised Manuscript: May 30, 2011
Manuscript Accepted: May 30, 2011
Published: August 3, 2011

Citation
Krishnan Venkatakrishnan, Dheeraj Vipparty, and Bo Tan, "Nanofibre fabrication by femtosecond laser ablation of silica glass," Opt. Express 19, 15770-15776 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Tong and E. Mazur, “Glass nanofibers for micro- and nano-scale photonic devices,” J. Non-Cryst. Solids 354(12-13), 1240–1244 (2008). [CrossRef]
  2. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos. Sci. Technol. 63(15), 2223–2253 (2003). [CrossRef]
  3. S. Ramakrishna, An introduction to electrospinning and nanofibers (World Scientific Pub Co Inc, 2005).
  4. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  5. S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, and Y. L. Joo, “Silica nanofibers from electrospinning/sol-gel process,” J. Mater. Sci. Lett. 22(12), 891–893 (2003). [CrossRef]
  6. C. Yan, T. Zhang, and P. S. Lee, “Flow assisted synthesis of highly ordered silica nanowire arrays,” Appl. Phys., A Mater. Sci. Process. 94(4), 763–766 (2009). [CrossRef]
  7. L. Dai, L. You, X. Duan, W. Lian, and G. Qin, “Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst,” Phys. Lett. A 335(4), 304–309 (2005). [CrossRef]
  8. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124(8), 1817–1822 (2002). [CrossRef] [PubMed]
  9. Z. Wang, R. Gao, J. Gole, and J. Stout, “Silica nanotubes and nanofiber arrays,” Adv. Mater. 12(24), 1938–1940 (2000). [CrossRef]
  10. D. Yu, Q. L. Hang, Y. Ding, H. Zhang, Z. Bai, J. Wang, Y. Zou, W. Qian, G. Xiong, and S. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73(21), 3076–3078 (1998). [CrossRef]
  11. X. Wu, W. Song, K. Wang, T. Hu, B. Zhao, Y. Sun, and J. Du, “Preparation and photoluminescence properties of amorphous silica nanowires,” Chem. Phys. Lett. 336(1-2), 53–56 (2001). [CrossRef]
  12. L. Tong, J. Lou, Z. Ye, G. T. Svacha, and E. Mazur, “Self-modulated taper drawing of silica nanowires,” Nanotechnology 16(9), 1445–1448 (2005). [CrossRef]
  13. V. N. Tokarev, S. Lazare, C. Belin, and D. Debarre, “Viscous flow and ablation pressure phenomena in nanosecond UV laser irradiation of polymers,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 717–720 (2004). [CrossRef]
  14. G. A. J. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components,” Appl. Opt. 41(27), 5660–5667 (2002). [CrossRef] [PubMed]
  15. A. Zoubir, L. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).
  16. E. Gamaly, A. Rode, B. Luther-Davies, and V. Tikhonchuk, “Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9(3), 949 (2002). [CrossRef]
  17. V. Koubassov, J. Laprise, F. Théberge, E. Förster, R. Sauerbrey, B. Müller, U. Glatzel, and S. Chin, “Ultrafast laser-induced melting of glass,” Appl. Phys., A Mater. Sci. Process. 79, 499–505 (2004). [CrossRef]
  18. R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072–1075 (2002). [CrossRef]
  19. M. Feit, A. Komashko, and A. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1657–1661 (2004). [CrossRef]
  20. S. Chin, “From multiphoton to tunnel ionization,” Advances in multi-photon processes and spectroscopy, S. H. Lin, A. A. Villaeys and Y. Fujimura, eds. World Scientific, Singapore, 16, 249–272 (2004).
  21. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B 61(17), 11437–11450 (2000). [CrossRef]
  22. A. Brodeur and S. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80(20), 4406–4409 (1998). [CrossRef]
  23. F. Korte, J. Koch, and B. Chichkov, “Formation of microbumps and nanojets on gold targets by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 879–881 (2004). [CrossRef]
  24. M. R. Kasaai, V. Kacham, F. Theberge, and S. L. Chin, “The interaction of femtosecond and nanosecond laser pulses with the surface of glass,” J. Non-Cryst. Solids 319(1-2), 129–135 (2003). [CrossRef]
  25. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14(22), 10460–10468 (2006). [CrossRef] [PubMed]
  26. B. Tan and K. Venkatakrishnan, “Synthesis of fibrous nanoparticle aggregates by femtosecond laser ablation in air,” Opt. Express 17(2), 1064–1069 (2009). [CrossRef] [PubMed]
  27. A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, M. Shen, and E. Mazur, “Morphology of femtosecond-laser-ablated borosilicate glass surfaces,” Appl. Phys. Lett. 83(15), 3030–3032 (2003). [CrossRef]
  28. K. L. Wray and T. J. Connolly, “Thermal conductivity of clear fused silica at high temperatures,” J. Appl. Phys. 30(11), 1702–1705 (1959). [CrossRef]
  29. B. Luther-Davies, A. V. Rode, N. R. Madsen, and E. G. Gamaly, “Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses,” Opt. Eng. 44(5), 051102–051108 (2005). [CrossRef]
  30. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: The formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007). [CrossRef]
  31. S. Juodkazis, H. Misawa, O. A. Louchev, and K. Kitamura, “Femtosecond laser ablation of chalcogenide glass: Explosive formation of nano-fibres against thermo-capillary growth of micro-spheres,” Nanotechnology 17(19), 4802–4805 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited