OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15792–15802

Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes

Yung-Jr Hung, San-Liang Lee, Kai-Chung Wu, Yian Tai, and Yen-Ting Pan  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15792-15802 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Silicon antireflection is realized with vertical-aligned SiNWs by using improved metal-induced etching technique. The spectral responses of the transmission, reflection, and absorption characteristics for the SiNWs of different lengths are investigated. In order to realize short SiNWs to provide sufficiently low reflection, a post chemical etching process is developed to make the nanowires have a larger length fluctuation and/or tapered structure. The use of short SiNWs can allow a faster process time and avoid the sub-bandgap absorption that frequently occurs in long nanowires. Short SiNWs can also provide more compatible material structure and fabrication procedures than long ones can for applying to make optoelectronic devices. Taking the applications to solar cells as examples, the SiNWs fabricated by the proposed technique can provide 92% of solar weighted absorption with about 720 nm long wires because of the resultant effective graded index and enhanced multiple optical scattering from the random SiNW lengths and tapered wires after KOH etching.

© 2011 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(220.4241) Optical design and fabrication : Nanostructure fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Thin Films

Original Manuscript: May 16, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: July 14, 2011
Published: August 3, 2011

Yung-Jr Hung, San-Liang Lee, Kai-Chung Wu, Yian Tai, and Yen-Ting Pan, "Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes," Opt. Express 19, 15792-15802 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009). [CrossRef]
  2. Y.-J. Hung, S.-L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18(7), 6841–6852 (2010). [CrossRef] [PubMed]
  3. S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, “Excellent antireflection properties of vertical silicon nanowire arrays,” Sol. Energy Mater. Sol. Cells 94(9), 1506–1511 (2010). [CrossRef]
  4. C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, and S. Wang, “Silicon nanowire-array-textured solar cells for photovoltaic application,” J. Appl. Phys. 108(9), 094318 (2010). [CrossRef]
  5. D. Kumar, S. K. Srivastava, P. K. Singh, M. Husain, and V. Kumar, “Fabrication of silicon nanowire arrays based solar cell with improved performance,” Sol. Energy Mater. Sol. Cells 95(1), 215–218 (2011). [CrossRef]
  6. L. A. Dobrzanski and A. Drygala, “Surface texturing of multicrystalline silicon solar cells,” J. Achieve. Mater. Manuf. Eng. 31, 77–82 (2008).
  7. T. Qiu, X. L. Wu, G. G. Siu, and P. K. Chu, “Intergrowth mechanism of silicon nanowires and silver dendrites,” J. Electron. Mater. 35(10), 1879–1884 (2006). [CrossRef]
  8. D. Kumar, S. K. Srivastava, P. K. Singh, K. N. Sood, V. N. Singh, N. Dilawar, and M. Husain, “Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics,” J. Nanopart. Res. 12(6), 2267–2276 (2010). [CrossRef]
  9. K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18(19), 3026–3035 (2008). [CrossRef]
  10. C. Chartier, S. Bastide, and C. Levy-Clement, “Metal-assisted chemical etching of silicon in HF-H2O2,” Electrochim. Acta 53(17), 5509–5516 (2008). [CrossRef]
  11. Y.-J. Hung, K.-C. Wu, S.-L. Lee, and Y.-T. Pan, “Realization and characterization of aligned silicon nanowire array with thin silver film,” IEEE Photon. J. (to be published). [CrossRef]
  12. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007). [CrossRef]
  13. H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnology 17(15), 3768–3774 (2006). [CrossRef]
  14. R. Koch, “The intrinsic stress of polycrystalline and epitaxial thin metal films,” J. Phys. Condens. Matter 6(45), 9519–9550 (1994). [CrossRef]
  15. J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(Suppl 3), A286–A292 (2010). [CrossRef] [PubMed]
  16. H. Bao and X. Ruan, “Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications,” Opt. Lett. 35(20), 3378–3380 (2010). [CrossRef] [PubMed]
  17. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78(13), 1850–1853 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited