OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15955–15964

Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host

M. V. Shestakov, V. K. Tikhomirov, D. Kirilenko, A. S. Kuznetsov, L. F. Chibotaru, A. N. Baranov, G. Van Tendeloo, and V. V. Moshchalkov  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 15955-15964 (2011)
http://dx.doi.org/10.1364/OE.19.015955


View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.

© 2011 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: June 17, 2011
Revised Manuscript: July 11, 2011
Manuscript Accepted: July 19, 2011
Published: August 4, 2011

Citation
M. V. Shestakov, V. K. Tikhomirov, D. Kirilenko, A. S. Kuznetsov, L. F. Chibotaru, A. N. Baranov, G. Van Tendeloo, and V. V. Moshchalkov, "Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host," Opt. Express 19, 15955-15964 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-15955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32(3), 510–518 (1961). [CrossRef]
  2. B. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006). [CrossRef]
  3. T. Trupke, A. Shalav, B. S. Richards, P. W. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sun light,” Sol. Energy Mater. Sol. Cells 90(18-19), 3327–3338 (2006). [CrossRef]
  4. J. de Wild, J. K. Rath, A. Meijerink, W. Van Sark, and R. E. I. Schropp, “Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) up-conversion phosphors,” Sol. Energy Mater. Sol. Cells 94(12), 2395–2398 (2010). [CrossRef]
  5. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009). [CrossRef] [PubMed]
  6. J. Méndez-Ramos, V. K. Tikhomirov, V. D. Rodríguez, and D. Furniss, “Infrared tunable up-conversion phosphor based on Er3+ doped nano-glass-ceramics,” J. Alloy. Comp. 440(1-2), 328–332 (2007). [CrossRef]
  7. T. Fukuda, S. Kato, E. Kin, K. Okaniwa, H. Morikawa, Z. Honda, and N. Kamata, “Wavelength conversion film with glass coated Eu chelate for enhanced silicon-photovoltaic cell performance,” Opt. Mater. 32(1), 22–25 (2009). [CrossRef]
  8. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 3073 (2009). [CrossRef]
  9. V. D. Rodríquez, V. K. Tikhomirov, J. Méndez-Ramos, A. C. Yanes, and V. V. Moshchalkov, “Towards broad range and highly efficient down-conversion of solar spectrum by Er3+-Yb3+ co-doped nano-structured glass-ceramics,” Sol. Energy Mater. Sol. Cells 94(10), 1612–1617 (2010). [CrossRef]
  10. V. K. Tikhomirov, V. D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, and V. V. Moshchalkov, “Preparation and luminescence of bulk oxyfluoride glasses doped with Ag nanoclusters,” Opt. Express 18(21), 22032–22040 (2010). [CrossRef] [PubMed]
  11. S. Ye, N. Jiang, F. He, X. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO(2) hybrid phosphors through efficient energy transfer from ZnO to Yb(3+).,” Opt. Express 18(2), 639–644 (2010). [CrossRef] [PubMed]
  12. Y. Teng, J. Zhou, X. Liu, S. Ye, and J. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express 18(9), 9671–9676 (2010). [CrossRef] [PubMed]
  13. A. Klein, B. Rech, and K. Ellme, Transparent Conductive Zinc Oxide, eds. (Springer, Berlin, 2008).
  14. C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi, B Basic Res. 244(9), 3027–3073 (2007). [CrossRef]
  15. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98(4), 041301 (2005). [CrossRef]
  16. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000). [CrossRef]
  17. Z. Zhou, T. Komori, T. Ayukawa, H. Yukawa, M. Morinaga, A. Koizumi, and Y. Takeda, “Li- and Er-codoped ZnO with enhanced 1.54 μm photoemission,” Appl. Phys. Lett. 87(9), 091109 (2005). [CrossRef]
  18. T. Fan, Q. Zhang, and Z. Jiang, “Enhanced near-infrared luminescence in Y2O3:Yb3+ nanocrystals by codoping with Li+ ions,” Opt. Commun. 284(1), 249–251 (2011). [CrossRef]
  19. A. N. Baranov, G. N. Panin, T. W. Kang, and Y.-J. Oh, “Growth of ZnO nanorods from a salt mixture,” Nanotechnology 16(9), 1918–1923 (2005). [CrossRef]
  20. A. N. Baranov, C. H. Chang, O. A. Shlyakhtin, G. N. Panin, T. W. Kang, and Y.-J. Oh, “In situ study of the ZnO–NaCl system during the growth of ZnO nanorods,” Nanotechnology 15(11), 1613–1619 (2004). [CrossRef]
  21. I. Sakaguchi, Y. Adachi, T. Ogaki, K. Matsumoto, S. Hishita, H. Haneda, and N. Ohashi, “Impurity contamination and diffusion during annealing in implanted ZnO,” Key Eng. Mater. 388, 23–26 (2009). [CrossRef]
  22. Y. Hashimoto, M. Wakeshima, K. Matsuhira, Y. Hinatsu, and Y. Ishii, “Structures and magnetic properties of ternary lithium oxides LiRO2 (R=Rare Earths),” Chem. Mater. 14(8), 3245–3251 (2002). [CrossRef]
  23. R. E. LaVilla, “M4,5 emission spectra from Gd2O3 and Yb2O3,” Phys. Rev. A 9(5), 1801–1805 (1974). [CrossRef]
  24. C. Dallera, E. Annese, J.-P. Rueff, A. Palenzona, G. Vanko, L. Braicovich, A. Shukla, and M. Grioni, “Determination of pressure-induced valence changes in YbAl2 by resonant inelastic X-ray emission,” Phys. Rev. B 68(24), 245114 (2003). [CrossRef]
  25. Y. Ding and Z. L. Wang, “Electron energy-loss spectroscopy study of ZnO nanobelts,” J. Electron Microsc. (Tokyo) 54(3), 287–291 (2005). [CrossRef] [PubMed]
  26. N. R. Yogomalar and A. C. Bose, “Burnstein-Moss shift and room temperature near-band-edge luminescence in lithium doped zinc oxide,” Appl. Phys., A Mater. Sci. Process. 103(1), 33–42 (2011). [CrossRef]
  27. V. K. Tikhomirov, K. Driesen, C. Görller-Walrand, and M. Mortier, “Broadband telecommunication wavelength emission in Yb3+-Er3+-Tm3+ co-doped nano-glassceramics,” Opt. Express 15(15), 9535–9540 (2007). [CrossRef] [PubMed]
  28. E. L. Nicholas and H. L. Howes, “The photolumenscence of flames,” Phys. Rev. 22(5), 425–431 (1923). [CrossRef]
  29. L. J. Radziemski, R. Engleman, and J. W. Brault, “Fourier-transform-spectroscopy measurements in the spectra of neutral lithium, 6Li,” Phys. Rev. A 52(6), 4462–4470 (1995). [CrossRef] [PubMed]
  30. A. Carvahlo, A. Alakauskas, A. Pasquarello, A. K. Tagantsev, and N. Setter, “Li-related defects in ZnO: Hybrid functional calculations,” Physica B 404(23-24), 4797–4799 (2009). [CrossRef]
  31. A. N. Alexandrova, A. I. Boldyrev, X. Li, H. W. Sarkas, J. H. Hendricks, S. T. Arnold, and K. H. Bowen, “Lithium cluster anions: photoelectron spectroscopy and ab initio calculations,” J. Chem. Phys. 134(4), 044322 (2011). [CrossRef] [PubMed]
  32. T. Hirai, Y. Harada, S. Hashimoto, T. Itoh, and N. Ohno, “Luminescence of excitons in mesoscopic ZnO particles,” J. Lumin. 112(1-4), 196–199 (2005). [CrossRef]
  33. G. Alombert-Godet, C. Armellini, S. Berneschi, A. Chiappini, A. Chiasera, M. Ferrari, S. Guddala, E. Moser, S. Pelli, D. N. Rao, and G. C. Righini, “Tb3+/Yb3+ co-activated silica-hafnia glass ceramic waveguides,” Opt. Mater. 33(2), 227–230 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited