OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 15982–15989

Improving resolution of superlens lithography by phase-shifting mask

Na Yao, Zian Lai, Liang Fang, Changtao Wang, Qin Feng, Zheyu Zhao, and Xiangang Luo  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 15982-15989 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1051 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose to apply phase-shifting mask (PSM) to superlens lithography to improve its resolution. The PSM comprises of chromium slits alternatively filled by Ag and PMMA. The pi-phase shift is induced whereas their transmittance of electric intensity is almost equal for two neighboring slits. The destructive interference between two slits has greatly improved the spatial resolution and image fidelity. For representative configurations of superlens lithography, FDTD numerical simulations demonstrate that two slits with center-to-center distance d = 35 nm (~λ/10) can be resolved in PSM design, compared to 60 nm (~λ/6) without the PSM.

© 2011 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.5080) Diffraction and gratings : Phase shift
(100.6640) Image processing : Superresolution
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

Original Manuscript: March 18, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: July 29, 2011
Published: August 5, 2011

Na Yao, Zian Lai, Liang Fang, Changtao Wang, Qin Feng, Zheyu Zhao, and Xiangang Luo, "Improving resolution of superlens lithography by phase-shifting mask," Opt. Express 19, 15982-15989 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  3. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988), Chap. 2, pp.4–7.
  4. Z. Liu, N. Fang, T. J. Yen, and X. Zhang, “Rapid growth of evanescent wave by a siler superlens,” Appl. Phys. Lett. 83(25), 5184–5186 (2003). [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  6. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens,” Appl. Phys. Lett. 96(4), 043102 (2010). [CrossRef]
  7. K. Lee, H. Park, J. Kim, G. Kang, and K. Kim, “Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption,” Opt. Express 16(3), 1711–1718 (2008). [CrossRef] [PubMed]
  8. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430 (2003).
  9. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett. 82(2), 161–163 (2003). [CrossRef]
  10. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett. 82(10), 1506–1508 (2003). [CrossRef]
  11. C. T. Wang, Y. H. Zhao, D. C. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16(6), 4217–4227 (2008). [CrossRef] [PubMed]
  12. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Dev. 29(12), 1828–1836 (1982). [CrossRef]
  13. M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, and H. A. E. Santini, “The phase-shifting mask II: Imaging simulation and submicrometer resist explosures,” IEEE Trans. Electron. Dev. 31(6), 753–763 (1984). [CrossRef]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  15. M. D. Arnold and R. J. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15(18), 11542–11552 (2007). [CrossRef] [PubMed]
  16. H. F. Shi, C. T. Wang, C. Du, X. Luo, X. C. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005). [CrossRef] [PubMed]
  17. E. D. Palik, The Handbook of Optical Constants of Solids (Academic Press, 1985).
  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  19. Y. Liu and A. Zakhor, “Binary and phase-shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5(2), 138–152 (1992). [CrossRef]
  20. Y. C. Pati and T. Kailath, “Phase-shifting masks for microlithography automated design and mask requirements,” J. Opt. Soc. Am. A 11(9), 2438–2452 (1994). [CrossRef]
  21. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96(25), 257402 (2006). [CrossRef] [PubMed]
  22. M. J. Madou, Fundamentals of Microfabrication (CRC, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited