OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16058–16074

Optimal design of composite nanowires for extended reach of surface plasmon-polaritons

Dayan Handapangoda, Malin Premaratne, Ivan D. Rukhlenko, and Chennupati Jagadish  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16058-16074 (2011)
http://dx.doi.org/10.1364/OE.19.016058


View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate composite cylindrical nanowires for the waveguiding of the lowest-order surface plasmon-polariton (SPP) mode. We find that the confinement of the SPP fields in a metallic nanowire can be significantly improved by a dielectric cladding and show that by adjusting the thickness of the optically-pumped cladding, the gain required to compensate for the losses can be minimized. If this structure is coated with an additional metal layer to form a metal–dielectric–metal (MDM) nanowire, we show that the field can be predominantly confined within the dielectric layer, to have amplitudes of three orders of magnitude higher than those in the metallic regions. We also show that the propagation lengths of SPPs can be maximized by the proper selection of the geometrical parameters. We further demonstrate that the mode is strongly confined in subwavelength scale, e.g., λ 0 2 / 1220 for a 60-nm-thick nanowire, where λ0 is the wavelength in vacuum. We also find that regardless of the size of nanowire, it is possible to carry over 98.5% of the mode energy within the nanowire. In addition, we demonstrate that by appropriate choice of the material thicknesses, the losses of an MDM nanowire can be compensated by a considerably low level of optical gain in the dielectric region. For example, the losses of a 260-nm-thick Ag–ZnO–Ag nanowire can be entirely compensated by a gain of ∼ 400 cm−1. Our results will be useful for the optimum design of nanowires as interconnects for high-density nanophotonic circuit integration.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves
(250.5403) Optoelectronics : Plasmonics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 21, 2011
Revised Manuscript: July 13, 2011
Manuscript Accepted: July 25, 2011
Published: August 8, 2011

Citation
Dayan Handapangoda, Malin Premaratne, Ivan D. Rukhlenko, and Chennupati Jagadish, "Optimal design of composite nanowires for extended reach of surface plasmon-polaritons," Opt. Express 19, 16058-16074 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. H. K. Stelzer, “Beyond the diffraction limit?,” Nature 417, 806–807 (2002). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  3. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE Sel. Top. Quantum Electron. 12, 1671–1677 (2006). [CrossRef]
  4. S. A. Maier, Plasmonics: Fundamentals and Applications , (Springer, 2007).
  5. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  6. J. Koglin, U. C. Fischer, and H. Fuchs, “Material contrast in scanning near-field optical microscopy at 1–10 nm resolution,” Phys. Rev. B 55, 7977–7984 (1997). [CrossRef]
  7. L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995). [CrossRef]
  8. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys.: Condens. Matter 14, R597–R624 (2002). [CrossRef]
  9. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007). [CrossRef] [PubMed]
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003). [CrossRef] [PubMed]
  11. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  12. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  13. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981). [CrossRef]
  14. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, “Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides,” Opt. Express 16, 14902–14909 (2008). [CrossRef] [PubMed]
  15. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–477 (1997). [CrossRef] [PubMed]
  16. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76, 035434 (2007). [CrossRef]
  17. D. F. P. Pile, T. Ogawa, D. K. Gramontnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimetnal investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  18. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by sub-wavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  19. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006). [CrossRef]
  20. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef] [PubMed]
  21. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  23. D. M. Pozar, Microwave Engineering , (Wiley, 1998).
  24. C. Untiedt, G. Rubio, S. Vieira, and N. Agraït, “Fabrication and characterization of metallic nanowires,” Phys. Rev. B 56, 2154–2160 (1997). [CrossRef]
  25. D. Handapangoda, I. D. Rukhlenko, M. Premaratne, and C. Jagadish, “Optimization of gain-assisted waveguiding in metal-dielectric nanowires,” Opt. Lett. 35, 4190–4192 (2010). [CrossRef] [PubMed]
  26. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64, 125420(1–10) (2001). [CrossRef]
  27. V. Krishnamurthy and B. Klein, “Theoretical investigation of metal cladding for nanowire and cylindrical micro-post lasers,” IEEE J. Quantum Electron. 44, 67–74 (2008). [CrossRef]
  28. W. L. Barnes, “Surface plasmon–polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006). [CrossRef]
  29. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  30. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49, 6868–6871 (2010). [CrossRef] [PubMed]
  31. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008). [CrossRef] [PubMed]
  32. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). [CrossRef] [PubMed]
  33. M. W. Vogel, “Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves,” PhD thesis (Queensland University of Technology, Australia, 2009).
  34. C. A. Pfeiffer and E. N. Economou, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phys. Rev. B 10, 3038–3051 (1974). [CrossRef]
  35. J. A. Stratton, Electromagnetic Theory , (McGraw-Hill, 1941).
  36. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwave-length plasmonic modes,” N. J. Phys. 10, 105018 (2008). [CrossRef]
  37. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  38. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010). [CrossRef] [PubMed]
  39. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors - Numerical Data and Graphical Information (Springer, 1999). [CrossRef] [PubMed]
  40. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media: Optical Amplifiers (Cambridge University Press, 2011).
  41. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
  42. J. Hecht, The Laser Guidebook (McGraw-Hill, 1992).
  43. H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology , (Wiley-VCH Verlag GmbH & Co. KGaA, 2009).
  44. Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers,” Appl. Phys. Lett. 78, 1469–1471 (2001). [CrossRef]
  45. Z. K. Tang, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Self-assembled ZnO nano-crystals and exciton lasing at room temperature,” J. Cryst. Growth 287, 169–179 (2006). [CrossRef]
  46. J. Lo, W. Lien, C. Lin, and J. He, “Er-doped ZnO nanorod arrays with enhanced 1540 nm emission by employing Ag island films and high-temperature annealing,” ACS Appl. Mater. Interfaces 3, 1009–1014 (2011). [CrossRef] [PubMed]
  47. J. Wang, S. K. Hark, and Q. Li, “Electronic structure and luminescence properties of Er doped ZnO nanowires,” Microsc. Microanal. 12, 748–749 (2006). [CrossRef]
  48. P. Zhao, W. Su, R. Wang, X. Xu, and F. Zhang, “Properties of thin silver films with different thickness,” Physica E 41, 387–390 (2009). [CrossRef]
  49. I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, “Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation,” Opt. Express 17, 17570–17581 (2009). [CrossRef] [PubMed]
  50. S. Chatterjee, O. D. Jayakumar, A. K. Tyagi, and P. Ayyub, “Template-based fabrication of Ag–ZnO core–shell nanorod arrays,” J. Cryst. Growth 312, 2724–2728 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited