OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16096–16105

Resolution-limited optical recording in 3D

Susanna Orlic, Enrico Dietz, Sven Frohmann, and Jens Rass  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16096-16105 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an optical write / read system for high density optical data storage in 3-D. The microholographic approach relies on submicron-sized reflection gratings that encode the digital data. As in conventional optical data storage, the physical limitations are imposed by both the diffraction of light and resolution of the recording material. We demonstrate resolution-limited volume recording in photopolymer materials sensitive in the green and violet spectral range. The volume occupied by a micrograting scales down by the transition in the write / read wavelength. Readout yields a micrograting width of 306 nm at 532 nm and 197 nm at 405 nm. To our knowledge these are the smallest volume holograms ever recorded. The recordings demonstrate the potential of the technique for volumetric optical structuring, data storage and encryption.

© 2011 OSA

OCIS Codes
(090.7330) Holography : Volume gratings
(210.2860) Optical data storage : Holographic and volume memories
(210.4770) Optical data storage : Optical recording
(210.4810) Optical data storage : Optical storage-recording materials
(160.5335) Materials : Photosensitive materials

ToC Category:
Optical Data Storage

Original Manuscript: May 19, 2011
Revised Manuscript: June 22, 2011
Manuscript Accepted: June 24, 2011
Published: August 8, 2011

Susanna Orlic, Enrico Dietz, Sven Frohmann, and Jens Rass, "Resolution-limited optical recording in 3D," Opt. Express 19, 16096-16105 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Mansuripur, The Physical Principles of Magneto-optical Recording (Cambridge Univ. Press, 1995), Chap. 1.
  2. T. Wilson, Y. Kawata, and S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21(13), 1003–1005 (1996). [CrossRef] [PubMed]
  3. S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, and P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29(14), 2058–2066 (1990). [CrossRef] [PubMed]
  4. J. W. Perry, B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, and S. R. Marder, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999). [CrossRef]
  5. M. M. Wang and S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39(11), 1826–1834 (2000). [CrossRef] [PubMed]
  6. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100(5), 1777–1788 (2000). [CrossRef] [PubMed]
  7. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994). [CrossRef] [PubMed]
  8. S. Homan and A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron. Lett. 31(8), 621–623 (1995). [CrossRef]
  9. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, 2000).
  10. H. J. Eichler, P. Kuemmel, S. Orlic, and A. Wappelt, “High density disk storage by multiplexed microholograms,” IEEE J. Sel. Top. Quantum Electron. 4(5), 840–848 (1998). [CrossRef]
  11. S. Orlic, S. Ulm, and H. J. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A, Pure Appl. Opt. 3(1), 72–81 (2001). [CrossRef]
  12. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44(16), 3197–3207 (2005). [CrossRef] [PubMed]
  13. M. Dubois, X. Shi, C. Erben, B. Lawrence, E. Boden, and K. Longley, “Microholograms recorded in a thermoplastic medium for three-dimensional data storage,” Jpn. J. Appl. Phys. 45(2B), 1239–1245 (2006). [CrossRef]
  14. K. Saito and S. Kobayashi, “Analysis of micro-reflector 3D optical disc recording,” Proc. SPIE 6282, 628213 (2007). [CrossRef]
  15. D. Day, M. Gu, and A. Smallridge, “Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer,” Adv. Mater. (Deerfield Beach Fla.) 13(12-13), 1005–1007 (2001). [CrossRef]
  16. X. P. Li, J. W. M. Chon, S. H. Wu, R. A. Evans, and M. Gu, “Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer,” Opt. Lett. 32(3), 277–279 (2007). [CrossRef] [PubMed]
  17. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  18. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10(7), 1636–1641 (1971). [CrossRef] [PubMed]
  19. G. Odian, Principles of Polymerisation, 4th ed. (John Wiles & Sons Inc., 2004).
  20. R. T. Ingwall and D. A. Waldman, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymer systems.
  21. S. Orlic, E. Dietz, T. Feid, S. Frohmann, and C. Mueller, “Optical investigation of photopolymer systems for microholographic storage,” J. Opt. A, Pure Appl. Opt. 11(2), 024014 (2009). [CrossRef]
  22. L. Dhar, M. G. Schnoes, H. E. Katz, A. Hale, and M. L. Schilling, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Photopolymers for digital holographic storage.
  23. B. Kippelen, in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds. (Springer-Verlag, 2000), Chap. Overview of photorefractive polymers for holographic data storage.
  24. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerization methods for volume hologram recording,” Proc. SPIE 2689, 127–141 (1996). [CrossRef]
  25. D. A. Waldman, C. J. Butler, and D. H. Raguin, “CROP holographic storage media for optical data storage at greater than 100 bits/μm2,” Proc. SPIE 5216, 10–25 (2003). [CrossRef]
  26. D. A. Waldman, E. S. Kolb, C. Wang, “DHD™ CROP holographic storage media for advanced optical data storage,” Optical Data Storage (ODS), OSA Technical Digest Series WDPD 4–7 (2007).
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited