OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16207–16222

Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes

Manuel J. Mendes, Ignacio Tobías, Antonio Martí, and Antonio Luque  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16207-16222 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1371 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a numerical study of the light focusing properties of dielectric spheroids with sizes comparable to the illuminating wavelength. An analytical separation-of-variables method is used to determine the electric field distribution inside and in the near-field outside the particles. An optimization algorithm was implemented in the method to determine the particles’ physical parameters that maximize the forward scattered light in the near-field region. It is found that such scatterers can exhibit pronounced electric intensity enhancement (above 100 times the incident intensity) in their close vicinity, or along wide focal regions extending to 10 times the wavelength. The results reveal the potential of wavelength-sized spheroids to manipulate light beyond the limitations of macroscopic geometrical optics. This can be of interest for several applications, such as light management in photovoltaics.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(260.2110) Physical optics : Electromagnetic optics
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: June 3, 2011
Revised Manuscript: July 4, 2011
Manuscript Accepted: July 6, 2011
Published: August 9, 2011

Manuel J. Mendes, Ignacio Tobías, Antonio Martí, and Antonio Luque, "Light concentration in the near-field of dielectric spheroidal particles with mesoscopic sizes," Opt. Express 19, 16207-16222 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys. 59(5), 657–699 (1996). [CrossRef]
  2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  3. M. J. Mendes, I. Tobías, A. Martí, and A. Luque, “Near-field scattering by dielectric spheroidal particles with sizes on the order of the illuminating wavelength,” J. Opt. Soc. Am. B 27(6), 1221–1231 (2010). [CrossRef]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  5. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007). [CrossRef]
  6. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef] [PubMed]
  7. C. Li, G. W. Kattawar, P.-W. Zhai, and P. Yang, “Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave,” Opt. Express 13(12), 4554–4559 (2005). [CrossRef] [PubMed]
  8. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Thin-film solar cells: light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1171 (2011). [CrossRef]
  9. L. E. McNeil, A. R. Hanuska, and R. H. French, “Near-field scattering from red pigment particles: absorption and spectral dependence,” J. Appl. Phys. 89(3), 1898–1906 (2001). [CrossRef]
  10. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005). [CrossRef] [PubMed]
  11. J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73(23), 235401 (2006). [CrossRef]
  12. H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001). [CrossRef] [PubMed]
  13. A. Devilez, N. Bonod, and B. Stout, “Near field dielectric microlenses,” Proc. SPIE 7717, 771708(2010). [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999).
  15. L.-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory (John Wiley & Sons, Inc., 2002).
  16. J. P. Barton, “Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,” Appl. Opt. 34(24), 5542–5551 (1995). [CrossRef] [PubMed]
  17. A. Devilez, N. Bonod, J. Wenger, D. Gérard, B. Stout, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17(4), 2089–2094 (2009). [CrossRef] [PubMed]
  18. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005). [CrossRef] [PubMed]
  19. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008). [CrossRef] [PubMed]
  20. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008). [CrossRef] [PubMed]
  21. S. Lecler, “Light scattering by sub-micrometric particles,” PhD thesis (Louis Pasteur University, 2005).
  22. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  23. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14(1), 29–49 (1975). [PubMed]
  24. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186(2), 705–714 (1973). [CrossRef]
  25. J. C. Ravey and P. Mazeron, “Light-scattering in the physical optics approximation—application to large spheroids,” J. Opt. 13(5), 273–282 (1982). [CrossRef]
  26. J. P. Barton, “Internal, near-surface, and scattered electromagnetic fields for a layered spheroid with arbitrary illumination,” Appl. Opt. 40(21), 3598–3607 (2001). [CrossRef] [PubMed]
  27. N. Richard, “Analysis of polarization effects on nanoscopic objects in the near-field optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(2), 026602 (2001). [CrossRef] [PubMed]
  28. J. P. Barton, “Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination,” Appl. Opt. 34(36), 8472–8473 (1995). [CrossRef] [PubMed]
  29. T. D. Milster, “Near-field optical data storage: avenues for improved performance,” Opt. Eng. 40(10), 2255–2260 (2001). [CrossRef]
  30. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010). [CrossRef] [PubMed]
  31. M. J. Mendes, A. Luque, I. Tobias, and A. Marti, “Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells,” Appl. Phys. Lett. 95(7), 071105 (2009). [CrossRef]
  32. C. Flammer, Spheroidal Wave Functions (Stanford University Press, 1957).
  33. L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, “Computations of spheroidal harmonics with complex arguments: a review with an algorithm,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 6792–6806 (1998). [CrossRef]
  34. P. Kirby, “Calculation of spheroidal wave functions,” Comput. Phys. Commun. 175(7), 465–472 (2006). [CrossRef]
  35. R. Kirby, “Calculation of radial prolate spheroidal wave functions of the second kind,” Comput. Phys. Commun. 181(3), 514–519 (2010). [CrossRef]
  36. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  37. C. Hägglund and B. Kasemo, “Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits,” Opt. Express 17(14), 11944–11957 (2009). [CrossRef] [PubMed]
  38. A. Luque, A. Marti, M. J. Mendes, and I. Tobias, “Light absorption in the near field around surface plasmon polaritons,” J. Appl. Phys. 104(11), 113118 (2008). [CrossRef]
  39. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  40. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, 1997).
  41. P. Mazeron and S. Muller, “Dielectric or absorbing particles: EM surface fields and scattering,” J. Opt. 29(2), 68–77 (1998). [CrossRef]
  42. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder-Mead simplex method in low dimensions,” SIAM J. Optim. 9(1), 112–147 (1998). [CrossRef]
  43. M. J. Mendes, H. K. Schmidt, and M. Pasquali, “Brownian dynamics simulations of single-wall carbon nanotube separation by type using dielectrophoresis,” J. Phys. Chem. B 112(25), 7467–7477 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited