OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16229–16235

Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K

Stefan Menzel, Laurent Diehl, Christian Pflügl, Anish Goyal, Christine Wang, Antonio Sanchez, George Turner, and Federico Capasso  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16229-16235 (2011)
http://dx.doi.org/10.1364/OE.19.016229


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report quantum cascade laser (QCL) master-oscillator power-amplifiers (MOPAs) at 300 K reaching output power of 1.5 W for tapered devices and 0.9 W for untapered devices. The devices display single-longitudinal-mode emission at λ = 7.26 µm and single-transverse-mode emission at TM00. The maximum amplification factor is 12 dB for the tapered devices.

© 2011 OSA

OCIS Codes
(140.3280) Lasers and laser optics : Laser amplifiers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: July 24, 2011
Published: August 9, 2011

Citation
Stefan Menzel, Laurent Diehl, Christian Pflügl, Anish Goyal, Christine Wang, Antonio Sanchez, George Turner, and Federico Capasso, "Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K," Opt. Express 19, 16229-16235 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64(11), 1533–1601 (2001). [CrossRef]
  3. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 582–591 (2002). [CrossRef]
  4. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010). [CrossRef]
  5. C. W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009). [CrossRef] [PubMed]
  6. F. Fuchs, S. Hugger, M. Kinzer, R. Aidam, W. Bronner, R. Lösch, Q. Yang, K. Degreif, and F. Schnürer, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010). [CrossRef]
  7. L. Diehl, C. Pflügl, M. F. Witinski, P. Wang, T. J. Tague, Jr., and F. Capasso, “Fourier transform spectrometers utilizing mid-infrared quantum cascade lasers,” Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010, 5500620.
  8. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gökden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95(22), 221104 (2009). [CrossRef]
  9. N. Yu, L. Diehl, E. Cubukcu, D. Bour, S. Corzine, G. Höfler, A. K. Wojcik, K. B. Crozier, A. Belyanin, and F. Capasso, “Coherent coupling of multiple transverse modes in quantum cascade lasers,” Phys. Rev. Lett. 102(1), 013901 (2009). [CrossRef] [PubMed]
  10. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic-crystal distributed-feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008). [CrossRef]
  11. B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010). [CrossRef]
  12. H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett. 17(1), 13–15 (2005). [CrossRef]
  13. M. Spreemann, M. Lichtner, M. Radziunas, U. Bandelow, and H. Wenzel, “Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers,” IEEE J. Quantum Electron. 45(6), 609–616 (2009) (and references therein). [CrossRef]
  14. H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett. 43(3), 160–162 (2007). [CrossRef]
  15. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4 µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80(22), 4103 (2002). [CrossRef]
  16. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, “Ultra-broadband semiconductor laser,” Nature 415(6874), 883–887 (2002). [CrossRef] [PubMed]
  17. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44(11), 1083–1088 (2008). [CrossRef]
  18. S. Slivken, A. Evans, W. Zhang, and M. Razeghi, “High-power, continuous-operation intersubband laser for wavelengths greater than 10 µm,” Appl. Phys. Lett. 90(15), 151115 (2007). [CrossRef]
  19. J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous-wave operation of λ~4.6 µm quantum-cascade lasers above room temperature,” IEEE J. Quantum Electron. 44(8), 747–754 (2008). [CrossRef]
  20. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95(15), 151112 (2009). [CrossRef]
  21. B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009). [CrossRef]
  22. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed., chapter 16 (Oxford University Press, 2006).
  23. A. Wittmann, Y. Bonetti, M. Fischer, J. Faist, S. Blaser, and E. Gini, “Distributed-feedback quantum-cascade lasers at 9 µm operating in continuous wave up to 423 K,” IEEE Photon. Technol. Lett. 21(12), 814–816 (2009). [CrossRef]
  24. B. Gökden, Y. Bai, S. Tsao, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High power 1D and 2D photonic crystal distributed feedback quantum cascade lasers,” SPIE Proc. 7945, 79450C, 79450C-12 (2011). [CrossRef]
  25. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Room-temperature continuous wave operation of distributed feedback quantum cascade lasers with watt-level power output,” Appl. Phys. Lett. 97(23), 231119 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited