OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16576–16592

Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber

Tetsuya Hayashi, Toshiki Taru, Osamu Shimakawa, Takashi Sasaki, and Eisuke Sasaoka  »View Author Affiliations


Optics Express, Vol. 19, Issue 17, pp. 16576-16592 (2011)
http://dx.doi.org/10.1364/OE.19.016576


View Full Text Article

Enhanced HTML    Acrobat PDF (1331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We designed and fabricated a multi-core fiber (MCF) in which seven identical trench-assisted pure-silica cores were arranged hexagonally. To design MCF, the relation among the crosstalk, fiber parameters, and fiber bend was derived using a new approximation model based on the coupled-mode theory with the equivalent index model. The mean values of the statistical distributions of the crosstalk were observed to be extremely low and estimated to be less than −30 dB even after 10,000-km propagation because of the trench-assisted cores and utilization of the fiber bend. The attenuation of each core was very low for MCFs (0.175–0.181 dB/km at 1550 nm) because of the pure-silica cores. Both the crosstalk and attenuation values are the lowest achieved in MCFs.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Optical Fiber

History
Original Manuscript: May 13, 2011
Revised Manuscript: June 9, 2011
Manuscript Accepted: June 9, 2011
Published: August 15, 2011

Virtual Issues
Space Multiplexed Optical Transmission (2011) Optics Express

Citation
Tetsuya Hayashi, Toshiki Taru, Osamu Shimakawa, Takashi Sasaki, and Eisuke Sasaoka, "Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber," Opt. Express 19, 16576-16592 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-17-16576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB5.
  2. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PDPB7.
  3. J. Cai, Y. Cai, C. Davidson, A. Lucero, H. Zhang, D. Foursa, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. Bergano, “20 Tbit/s capacity transmission over 6,860 km,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB4.
  4. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010). [CrossRef]
  5. T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” in Proceedings of 14th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2009), paper FT4.
  6. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB9.
  7. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10.
  8. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
  9. B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB7.
  10. Y. Kokubun and M. Koshiba, “Novel fibers for space/mode-division multiplexing—proposal of homogeneous and heterogeneous multi-core fibres—,” presented at the International Symposium on Global Optical Infrastructure Technologies towards the Next Decades (EXAT2008), Tokyo, Japan, 12 Sept. 2008.
  11. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009). [CrossRef]
  12. K. Imamura, K. Mukasa, and T. Yagi, “Investigation on multi-core fibers with large Aeff and low micro bending loss,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK6.
  13. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E 94-B, 409–416 (2011). [CrossRef]
  14. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express 18(14), 15122–15129 (2010). [CrossRef] [PubMed]
  15. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Crosstalk variation of multi-core fibre due to fibre bend,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Institute of Electrical and Electronics Engineers, 2010), paper We.8.F.6.
  16. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OWJ3.
  17. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPC2.
  18. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972). [CrossRef]
  19. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982). [CrossRef] [PubMed]
  20. D. Marcuse, Theory of Dielectric Optical Waveguides Second Edition (Academic Press, 1991)
  21. K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of 15th OptoElectronics and Communications Conference (Institute of Electrical and Electronics Engineers, 2010), paper 7C2–1.
  22. V. Curri, P. Poggiolini, G. Bosco, A. Carena, and F. Forghieri, “Performance evaluation of long-haul 111 Gb/s PM-QPSK transmission over different fiber types,” IEEE Photon. Technol. Lett. 22(19), 1446–1448 (2010). [CrossRef]
  23. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010). [CrossRef] [PubMed]
  24. M. Wandel and P. Kristensen, “Fiber designs for high figure of merit and high slope dispersion compensating fibers,” in Fiber Based Dispersion Compensation, S. Ramachandran, ed. (Springer, 2007).
  25. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on finite element scheme: application to photonic crystal fibers,” J. Quantum Electron. 38(7), 927–933 (2002). [CrossRef]
  26. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited