OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 17 — Aug. 15, 2011
  • pp: 16612–16635

Mode-dependent loss and gain: statistics and effect on mode-division multiplexing

Keang-Po Ho and Joseph M. Kahn  »View Author Affiliations

Optics Express, Vol. 19, Issue 17, pp. 16612-16635 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In multimode fiber transmission systems, mode-dependent loss and gain (collectively referred to as MDL) pose fundamental performance limitations. In the regime of strong mode coupling, the statistics of MDL (expressed in decibels or log power gain units) can be described by the eigenvalue distribution of zero-trace Gaussian unitary ensemble in the small-MDL region that is expected to be of interest for practical long-haul transmission. Information-theoretic channel capacities of mode-division-multiplexed systems in the presence of MDL are studied, including average and outage capacities, with and without channel state information.

© 2011 OSA

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Capacity Limits

Original Manuscript: May 18, 2011
Revised Manuscript: July 7, 2011
Manuscript Accepted: July 10, 2011
Published: August 15, 2011

Virtual Issues
Space Multiplexed Optical Transmission (2011) Optics Express

Keang-Po Ho and Joseph M. Kahn, "Mode-dependent loss and gain: statistics and effect on mode-division multiplexing," Opt. Express 19, 16612-16635 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. IEEE, 802.3 Standard, Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, 2008.
  2. A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter, “Exploitation of optical interconnects in future server architectures,” IBM J. Res. Develop. 49(4), 755–775 (2005). [CrossRef]
  3. Y. Koike and S. Takahashi, “Plastic optical fibers: technologies and communication links,” in Optical Fiber Telecommunications VB: Systems and Networks, I. P. Kaminow, T. Li and A. E. Willner eds. (Elsevier Academic, 2008).
  4. D. Gloge, “Optical power flow in multimode fibers,” Bell Syst. Tech. J. 51, 1767–1780 (1972).
  5. R. Olshansky, “Mode-coupling effects in graded-index optical fibers,” Appl. Opt. 14(4), 935–945 (1975). [PubMed]
  6. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, “An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links,” J. Lightwave Technol. 16(3), 324–331 (1998). [CrossRef]
  7. K.-P. Ho and J. M. Kahn, “Statistics of group delays in multimode fiber with strong mode coupling,” to be published in J. Lightwave Technol., http://arxiv.org/abs/1104.4527
  8. M. L. Mehta, Random Matrices, 3rd ed. (Elsevier Academic, 2004).
  9. B. Rosinski, J. W. D. Chi, P. Grosso, and J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 17(5), 807–810 (1999). [CrossRef]
  10. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-11-11117 . [CrossRef] [PubMed]
  11. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000). [CrossRef] [PubMed]
  12. A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007). [CrossRef]
  13. A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005). [CrossRef]
  14. R. C. J. Hsu, A. Tarighat, A. Shah, A. H. Sayed, and B. Jalali, “Capacity enhancement in coherent optical MIMO (COMIMO) multimode fiber links,” IEEE Commun. Lett. 10(3), 1089–7798 (2006). [CrossRef]
  15. M. Nazarathy and A. Agmon, “Coherent transmission direct detection MIMO over short-range optical interconnects and passive optical networks,” J. Lightwave Technol. 26(14), 2037–2045 (2008). [CrossRef]
  16. H. Bülow, “Coherent multichannel transmission over multimode-fiber and related signal processing,” Proc. of OSA Topical Meeting on Access Networks and In-House Communications, Karlsruhe, Germany, June 21–24, 2010, paper AThB1.
  17. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber,” in OFC ’11, paper PDPB8.
  18. R. Ryf, S. Randel, A. H. Gnuack, C. Bolle, R.-J. Essiambre, P. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing,” in OFC ’11, paper PDPB10.
  19. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Margoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100 Gb/s, over two modes of 40 km-long prototype few-mode fiber, using LCOS based mode multiplexer and demultiplexer,” in OFC ’11, paper PDPB9.
  20. Z. Tong, Q. Yang, Y. Ma, and W. Shieh, “21.4 Gbit/s transmission over 200 km multimode fiber using coherent optical OFDM,” Electron. Lett. 44(23), 1373–1374 (2008). [CrossRef]
  21. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-841 . [CrossRef] [PubMed]
  22. J. Shentu, K. Panta, and J. Armstrong, “Effects of phase noise on performance of OFDM systems using an ICI cancellation scheme,” IEEE Trans. Broadcast 49(2), 221–224 (2003). [CrossRef]
  23. S. Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences and solutions,” IEEE Trans. Commun. 52(11), 1988–1996 (2004). [CrossRef]
  24. W. Shieh and K.-P. Ho, “Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-20-15718 . [CrossRef] [PubMed]
  25. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6), 4815–4823 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-6-4815 . [CrossRef] [PubMed]
  26. K.-P. Ho, A. P. T. Lau, and W. Shieh, “Equalization-enhanced phase noise induced timing jitter,” Opt. Lett. 36(4), 585–587 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-4-585 . [CrossRef] [PubMed]
  27. P. J. Winzer and G. J. Foschini, “Outage calculations for spatially multiplexed fiber links,” in OFC ’11, paper OThO5.
  28. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000). [CrossRef] [PubMed]
  29. H. Kogelnik, R. M. Jopson, and L. E. Nelson, “Polarization-mode dispersion” in Optical Fiber Telecommunications IVB: Systems and Impairments, I. Kaminow and T. Li, eds, (Academic Press, 2002).
  30. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22(19), 1029–1030 (1986). [CrossRef]
  31. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, “Principal modes in graded-index multimode fiber in presence of spatial- and polarization-mode coupling,” J. Lightwave Technol. 27(10), 1248–1261 (2009). [CrossRef]
  32. A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless Communications (Now, 2004).
  33. D. Tse and P. Viswanath, Fundamentals of Wireless Communication (Cambridge Univ. Press, 2005).
  34. X. Zhu and R. D. Murch, “Layered space-frequency equalization in a single-carrier MIMO system for frequency-selective channels,” IEEE Trans. Wirel. Comm. 3(3), 701–708 (2004). [CrossRef]
  35. B. Vucetic and J. Yuan, Space-Time Coding (Wiley, 2003).
  36. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block coding for wireless communications: performance results,” IEEE J. Sel Areas in Commun. 17(3), 451–460 (1999). [CrossRef]
  37. R. Bellman, “Limit theorems for non-commutative operations I,” Duke Math. J. 21(3), 491–500 (1954). [CrossRef]
  38. H. Furstenberg and H. Kesten, “Products of random matrices,” Ann. Math. Stat. 31(2), 457–469 (1960). [CrossRef]
  39. J. E. Cohen and C. M. Newman, “The stability of large random matrices and their products,” Ann. Probab. 12(2), 283–310 (1984). [CrossRef]
  40. A. Crisanti, G. Paladin, and A. Vulpiani, Products of Random Matrices in Statistical Physics (Springer, 1993).
  41. M. A. Berger, “Central limit theorem for products of random matrices,” Trans. Am. Math. Soc. 285(2), 777–803 (1984). [CrossRef]
  42. A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Photon. Technol. Lett. 14(3), 313–315 (2002). [CrossRef]
  43. A. Glatarossa and L. Palmieri, “The exact statistics of polarization-dependent loss in fiber-optic links,” IEEE Photon. Technol. Lett. 15(1), 57–59 (2003). [CrossRef]
  44. D. Voiculescu, K. Dykema, and A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, (American Mathematical Society, 1992).
  45. A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, vol. 335, (Cambridge Univ. Press, 2006).
  46. P. Lu, L. Chen, and X. Bao, “Statistical distribution of polarization dependent loss in the presence of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 13(5), 451–453 (2001). [CrossRef]
  47. D. Voiculescu, “Limit laws for random matrices and free products,” Invent. Math. 104(1), 201–220 (1991). [CrossRef]
  48. T. Tao and V. H. Vu, “From the Littlewood-Offord problem to the circular law: Universality of the spectral distribution of random matrices,” Bull. Am. Math. Soc. 46(3), 377–396 (2009). [CrossRef]
  49. G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed. (Oxford, 1992).
  50. T. S. Rapport, Wireless Communications: Principles & Practice (Prentice Hall, 1996).
  51. K.-P. Ho, “Statistical properties of stimulated Raman crosstalk in WDM systems,” J. Lightwave Technol. 18(7), 915–921 (2000). [CrossRef]
  52. K.-P. Ho, “Central limits for the products of free random variables,” http://arxiv.org/abs/1101.5220 .
  53. H. Bercovici and V. Pata, “Limit laws for products of free and independent random variables,” Studia Math. 141, 43–52 (2000).
  54. G. Chistyakov and F. Götze, “Limit theorems in free probability theory. II,” Central Eur. J. Math. 6(1), 87–117 (2008). [CrossRef]
  55. V. Kargin, “The norm of products of free random variables,” Probab. Theory Relat. Fields 139(3-4), 397–413 (2007). [CrossRef]
  56. E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” Ann. Math. 62(3), 548–564 (1955). [CrossRef]
  57. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10(10), 2252–2258 (1971). [CrossRef] [PubMed]
  58. K. Koebele, M. Salsi, G. Charlet, and S. Bigo, “Nonlinear effects in long-haul transmission over bimodal optical fibre,” in ECOC ’10, paper Mo.2.C.6.
  59. D. E. Knuth, The Art of Computer Programming II: Seminumerical Algorithms, 3rd ed. (Addison Wesley, 1998).
  60. H. G. Golub and C. F. van Loan, Matrix Computations, 3rd ed. (Johns Hopkins, 1996).
  61. I. Dumitriu and A. Edelman, “Matrix models for beta ensembles,” J. Math. Phys. 43(11), 5830–5847 (2002). [CrossRef]
  62. A. S. Hedayat, N. J. A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Applications, (Springer, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited