OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 16975–16984

Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer

Ming Lun Tseng, Bo Han Chen, Cheng Hung Chu, Chia Min Chang, Wei Chih Lin, Nien-Nan Chu, Masud Mansuripur, Ai Qun Liu, and Din Ping Tsai  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 16975-16984 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (3735 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond laser pulses are focused on a thin film of Ge2Sb2Te5 phase-change material, and the transfer of the illuminated material to a nearby substrate is investigated. The size, shape, and phase-state of the fabricated pattern can be effectively controlled by the laser fluence and by the thickness of the Ge2Sb2Te5 film. Results show multi-level electrical and optical reflection states of the fabricated patterns, which may provide a simple and efficient foundation for patterning future phase-change devices.

© 2011 OSA

OCIS Codes
(210.4810) Optical data storage : Optical storage-recording materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(310.3840) Thin films : Materials and process characterization

ToC Category:
Optical Data Storage

Original Manuscript: June 27, 2011
Revised Manuscript: July 28, 2011
Manuscript Accepted: July 29, 2011
Published: August 15, 2011

Ming Lun Tseng, Bo Han Chen, Cheng Hung Chu, Chia Min Chang, Wei Chih Lin, Nien-Nan Chu, Masud Mansuripur, Ai Qun Liu, and Din Ping Tsai, "Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer," Opt. Express 19, 16975-16984 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968). [CrossRef]
  2. A. L. Greer and N. Mathur, “Materials science: changing face of the chameleon,” Nature 437(7063), 1246–1247 (2005). [CrossRef] [PubMed]
  3. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000). [CrossRef]
  4. K.-F. Kao, C.-M. Lee, M.-J. Chen, M.-J. Tsai, and T.-S. Chin, “Ga2Te3Sb5—A Candidate for Fast and Ultralong retention phase-change memory,” Adv. Mater. (Deerfield Beach Fla.) 21(17), 1695–1699 (2009). [CrossRef]
  5. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991). [CrossRef]
  6. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007). [CrossRef] [PubMed]
  7. M. Terao, T. Morikawa, and T. Ohta, “Electrical phase-change memory: fundamentals and state of the art,” Jpn. J. Appl. Phys. 48(8), 080001 (2009). [CrossRef]
  8. C. B. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997). [CrossRef]
  9. E. M. Wright, P. K. Khulbe, and M. Mansuripur, “Dynamic theory of crystallization in Ge2Sb2.3Te5 phase-change optical recording media,” Appl. Opt. 39(35), 6695–6701 (2000). [CrossRef] [PubMed]
  10. G. F. Zhou, “Materials aspects in phase change optical recording,” Mater. Sci. Eng. A 73, 304–306 (2001).
  11. P. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt-quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys. 88(7), 3926–3933 (2000). [CrossRef]
  12. R. Pandian, B. J. Kooi, G. Palasantzas, J. T. M. De Hosson, and A. Pauza, “Nanoscale electrolytic switching in phase-change chalcogenide films,” Adv. Mater. (Deerfield Beach Fla.) 19(24), 4431–4437 (2007). [CrossRef]
  13. L. P. Shi, T. C. Chong, P. K. Tan, X. S. Miao, Y. M. Huang, and R. Zhao, “Study of the partial crystallization properties of phase-change optical recording disks,” Jpn. J. Appl. Phys. 38(Part 1, No. 3B), 1645–1648 (1999). [CrossRef]
  14. S. R. Ovshinsky and W. Czubatyj, “New developments in optical phase-change memory,” Proc. SPIE 4085, 15–22 (2001). [CrossRef]
  15. D. Lencer, M. Salinga, and M. Wuttig, “Design rules for phase-change materials in data storage applications,” Adv. Mater. (Deerfield Beach Fla.) 23(18), 2030–2058 (2011). [CrossRef] [PubMed]
  16. T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008). [CrossRef] [PubMed]
  17. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008). [CrossRef] [PubMed]
  18. W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003). [CrossRef]
  19. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006). [CrossRef] [PubMed]
  20. Y. Jung, S. H. Lee, A. T. Jennings, and R. Agarwal, “Core-shell heterostructured phase change nanowire multistate memory,” Nano Lett. 8(7), 2056–2062 (2008). [CrossRef] [PubMed]
  21. Y. Yin, T. Noguchi, H. Ohno, and S. Hosaka, “Programming margin enlargement by material engineering for multilevel storage in phase-change memory,” Appl. Phys. Lett. 95(13), 133503 (2009). [CrossRef]
  22. X. M. Wang, M. Kuwahara, K. Awazu, P. Fons, J. Tominaga, and Y. Ohki, “Proposal of a grating-based optical reflection switch using phase change materials,” Opt. Express 17(19), 16947–16956 (2009). [CrossRef] [PubMed]
  23. D. Tanaka, Y. Ikuma, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, and H. Tsuda, “Demonstration of 1000-times switching of phase-change optical gate with Si wire waveguides,” Electron. Lett. 46, 1460 (2010).
  24. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004). [CrossRef]
  25. C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652 (2011). [CrossRef] [PubMed]
  26. Q. Guo, M. H. Li, Y. Li, L. P. Shi, T. C. Chong, J. A. Kalb, and C. V. Thompson, “Crystallization-induced stress in thin phase change films of different thicknesses,” Appl. Phys. Lett. 93(22), 221907 (2008). [CrossRef]
  27. K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007). [CrossRef]
  28. Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008). [CrossRef]
  29. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010). [CrossRef] [PubMed]
  30. S.-W. Nam, T.-Y. Lee, J.-S. Wi, D. Lee, H.-S. Lee, K.-B. Jin, M.-H. Lee, H.-M. Kim, and K.-B. Kim, “Electron-beam lithography patterning of Ge2Sb2Te5 nanostructures using hydrogen silsesquioxane and amorphous Si intermediate layer,” J. Electrochem. Soc. 154(9), H844–H847 (2007). [CrossRef]
  31. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1540 (1986). [CrossRef]
  32. H. Shin, H. Kim, H. Lee, H. Yoo, J. Kim, H. Kim, and M. Lee, “Photoresist-free lithographic patterning of solution-processed nanostructured metal thin films,” Adv. Mater. (Deerfield Beach Fla.) 20(18), 3457–3461 (2008). [CrossRef]
  33. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005). [CrossRef]
  34. S. Zergioti, S. Mailis, N. A. Vainos, A. Ikiades, C. P. Grigoropoulos, and C. Fotakis, “Microprinting and microetching of diffractive structures using ultrashort laser pulse,” Appl. Surf. Sci. 138–139(1-2), 82–86 (1999). [CrossRef]
  35. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets de-posited in microarrays by femtosecond Ti:sapphire laser induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006). [CrossRef]
  36. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010). [CrossRef] [PubMed]
  37. M. Colina, M. Duocastella, J. M. Fernandez-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006). [CrossRef]
  38. P. Serra, M. Duocastella, J. M. Fernandez-Pradas, and J. L. Morenza, “Liquids microprinting through laser-induced forward transfer,” Appl. Surf. Sci. 255(10), 5342–5345 (2009). [CrossRef]
  39. M. Colina, P. Serra, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “DNA deposition through laser induced forward transfer,” Biosens. Bioelectron. 20(8), 1638–1642 (2005). [CrossRef] [PubMed]
  40. T. V. Kononenko, P. Alloncle, V. I. Konov, and M. Sentis, “Laser transfer of diamond nanopowder induced by metal film blistering,” Appl. Phys., A Mater. Sci. Process. 94(3), 531–536 (2009). [CrossRef]
  41. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989). [CrossRef]
  42. S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, “Etching and printing of diffractive optical microstructures by a femtosecond excimer laser,” Appl. Opt. 38(11), 2301–2308 (1999). [CrossRef] [PubMed]
  43. M. C. Suh, B. D. Chin, M.-H. Kim, T. M. Kang, and S. T. Lee, “Enhanced luminance of blue light-emitting polymers by blending with hole-transporting materials,” Adv. Mater. (Deerfield Beach Fla.) 15(15), 1254–1258 (2003). [CrossRef]
  44. J. Lee and S. Lee, “Laser-induced thermal imaging of polymer light-emitting materials on poly(3,4-ethylenedioxythiophene): silane hole-transport layer,” Adv. Mater. (Deerfield Beach Fla.) 16(1), 51–54 (2004). [CrossRef]
  45. C. M. Chang, C. H. Chu, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Opt. Express 19(10), 9492–9504 (2011). [CrossRef] [PubMed]
  46. C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H.-P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009). [CrossRef]
  47. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006). [CrossRef] [PubMed]
  48. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, “Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase,” Thin Solid Films 370(1-2), 258–261 (2000). [CrossRef]
  49. S. Danto, F. Sorin, N. D. Orf, Z. Wang, S. A. Speakman, J. D. Joannopoulos, and Y. Fink, “Fiber field-effect device via in situ channel crystallization,” Adv. Mater. (Deerfield Beach Fla.) 22(37), 4162–4166 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited