OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17002–17012

Excitation of Rydberg states in rubidium with near infrared diode lasers

Donald P. Fahey and Michael W. Noel  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17002-17012 (2011)
http://dx.doi.org/10.1364/OE.19.017002


View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A system of three external cavity diode lasers is used to excite Rydberg states in rubidium. The 5S→5P→5D transitions are driven using lasers with λ = 780 and 776 nm respectively. From the 5D state, atoms fluoresce down to the 6P state. The final transition to Rydberg levels is from the 6P state with laser light near λ = 1016 nm. The nS and nD Rydberg states are accessible directly and with the application of a modest electric field nP states can also be excited. As a test of this system, Stark spectra are collected for nD and nP states.

© 2011 OSA

OCIS Codes
(020.5780) Atomic and molecular physics : Rydberg states
(140.2020) Lasers and laser optics : Diode lasers

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: May 13, 2011
Revised Manuscript: June 27, 2011
Manuscript Accepted: July 31, 2011
Published: August 16, 2011

Citation
Donald P. Fahey and Michael W. Noel, "Excitation of Rydberg states in rubidium with near infrared diode lasers," Opt. Express 19, 17002-17012 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17002


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Anderson, J. R. Veale, and T. F. Gallagher, “Resonant dipole–dipole energy transfer in a nearly frozen Rydberg gas,” Phys. Rev. Lett. 80, 249–252 (1998). [CrossRef]
  2. I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum, V. M. Akulin, and P. Pillet, “Many-body effects in a frozen Rydberg gas,” Phys. Rev. Lett. 80, 253–256 (1998). [CrossRef]
  3. D. Tong, S. M. Farooqi, J. Stanojevic, S. Drishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, “Local blockade of Rydberg excitation in an ultracold gas,” Phys. Rev. Lett. 93, 063001 (2004). [CrossRef] [PubMed]
  4. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, “Dipole blockade at Förster resonances in high-resolution laser excitation of Rydberg states of cesium atoms,” Phys. Rev. Lett. 97, 083003 (2006). [CrossRef] [PubMed]
  5. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009). [CrossRef]
  6. A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, “Observation of collective excitation of two individual atoms in the Rydberg blockade regime,” Nat. Phys. 5, 115–118 (2009). [CrossRef]
  7. D. Comparat and P. Pillet, “Dipole blockade in a cold Rydberg atomic sample [Invited],” J. Opt. Soc. Am. B 27, A208–A232 (2010). [CrossRef]
  8. M. D. Lukin and P. R. Hemmer, “Quantum entanglement via optical control of atom–atom interactions,” Phys. Rev. Lett. 84, 2818–2821 (2000). [CrossRef] [PubMed]
  9. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000). [CrossRef] [PubMed]
  10. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]
  11. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010). [CrossRef] [PubMed]
  12. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010). [CrossRef] [PubMed]
  13. A. Fioretti, D. Comparat, C. Drag, T. F. Gallagher, and P. Pillet, “Long-range forces between cold atoms,” Phys. Rev. Lett. 82, 1839–1842 (1999). [CrossRef]
  14. M. P. Robinson, B. Laburthe Tolra, Michael W. Noel, T. F. Gallagher, and P. Pillet, “Spontaneous evolution of Rydberg atoms into an ultracold plasma,” Phys. Rev. Lett. 85, 4466–4469 (2000). [CrossRef] [PubMed]
  15. S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High-angular-momentum states in cold Rydberg gasses,” Phys. Rev. Lett. 86, 3993–3996 (2001). [CrossRef] [PubMed]
  16. T. C. Killian, T. Pattard, T. Pohl, and J. M. Rost, “Ultracold neutral plasmas,” Phys. Rep. 449, 77–130 (2007). [CrossRef]
  17. C. Boisseau, I. Simbotin, and R. Côté, “Macrodimers: ultralong range Rydberg molecules,” Phys. Rev. Lett. 88, 133004 (2002). [CrossRef] [PubMed]
  18. S. M. Farooqi, D. Tong, S. Krishnan, J. Stanojevic, Y. P. Zhang, J. R. Ensher, A. S. Estrin, C. Boisseau, R. Côté, E. E. Eyler, and P. L. Gould, “Long-range molecular resonances in a cold Rydberg gas,” Phys. Rev. Lett. 91, 183002 (2003).
  19. K. R. Overstreet, A. Schwettmann, J. Tallant, D. Booth, and J. P. Shaffer, “Observation of electric-field-induced Cs Rydberg atom macrodimers,” Nat. Phys. 5, 581–585 (2009). [CrossRef]
  20. C. H. Greene, A. S. Dickinson, and H. R. Sadeghpour, “Creation of polar and nonpolar ultra-long-range Rydberg molecules,” Phys. Rev. Lett. 85, 2458–2461 (2000). [CrossRef] [PubMed]
  21. V. Bendowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, and T. Pfau, “Observation of ultralong-range Rydberg molecules,” Nature 458, 1005–1008 (2009). [CrossRef]
  22. V. Bendkowsky, B. Butscher, J. Nipper, J. B. Balewski, J. P. Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl, and J. M. Rost, “Rydberg trimers and excited dimers bound by internal quantum reflection,” Phys. Rev. Lett. 105, 163201 (2010). [CrossRef]
  23. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992). [CrossRef]
  24. C. Iu, G. D. Stevens, and H. Metcalf, “Instrumentation for multistep excitation of lithium atoms to Rydberg states,” Appl. Opt. 34, 2640–2644 (1995). [CrossRef] [PubMed]
  25. A. Grabowski, R. Heidemann, R. Löw, J. Stuhler, and T. Pfau, “High resolution Rydberg spectroscopy of ultra-cold rubidium atoms,” Fortschr. Phys. 54, 765–775 (2006). [CrossRef]
  26. M. Viteau, J. Radogostowicz, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch, and E. Arimondo, “Rydberg spectroscopy of a Rb MOT in the presence of applied or ion created electric fields,” Opt. Express 19, 6007–6019 (2011). [CrossRef] [PubMed]
  27. P. Thoumany, Th. Germann, T. Hänsch, G. Stania, L. Urbonas, and Th. Becker, “Spectroscopy of rubidium Rydberg states with three diode lasers,” J. Mod. Opt. 56, 2055–2060 (2009). [CrossRef]
  28. B. Sanguinetti, H. O. Majeed, M. L. Jones, and B. T. H. Varcoe, “Precision measurements of quantum defects in the nP3/2 Rydberg states of 85Rb,” J. Phys. B 42, 165004 (2009). [CrossRef]
  29. L. A. M. Johnson, O. H. Majeed, B. Sanguinetti, Th. Becker, and B. T. H. Varcoe, “Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection,” New J. Phys. 12, 063028 (2010). [CrossRef]
  30. T. T. Grove, V. Sanchez-Villicana, B. C. Duncan, S. Maleki, and P. L. Gould, “Two-photon two-color diode laser spectroscopy of the Rb 5D5/2 state,” Phys. Scr. 52, 271–276 (1995). [CrossRef]
  31. T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, “Blue five-level frequency-upconversion system in rubidium,” Opt. Lett. 31, 1002–1004 (2006). [CrossRef] [PubMed]
  32. W. Süptitz, B. C. Duncan, and P. L. Gould, “Efficient 5D excitation of trapped Rb atoms using pulses of diode-laser light in the counterintuitive order,” J. Opt. Soc. Am. B 14, 1001–1008 (1997). [CrossRef]
  33. E. Paradis, B. Barrett, A. Kumarakrishnan, R. Zhang, and G. Raithel, “Observation of superfluorescent emissions from laser-cooled atoms,” Phys. Rev. A 77, 043419 (2008). [CrossRef]
  34. D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008). [CrossRef]
  35. E. Gomez, S. Aubin, L. A. Orozco, and G. D. Sprouse, “Lifetime and hyperfine splitting measurements on the 7s and 6p levels in rubidium,” J. Opt. Soc. Am. B 21, 2058–2067 (2004). [CrossRef]
  36. A. J. Olson and S. K. Mayer, “Electromagnetically induced transparency in rubidium,” Am. J. Phys. 77, 116–121 (2009). [CrossRef]
  37. A. Hemmerich, D. H. McIntyre, C. Zimmermann, and T. W. Hänsch, “Second-harmonic generation and optical stabilization of a diode laser in an external ring resonator,” Opt. Lett. 15, 372–374 (1990). [CrossRef] [PubMed]
  38. M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251–2275 (1979). [CrossRef]
  39. W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, “Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: quantum defects of the ns, np, and nd series,” Phys. Rev. A 67, 052502 (2003). [CrossRef]
  40. M. S. Safronova, C. J. Williams, and C. W. Clark, “Relativistic many-body calculations of electric-dipole matrix elements, lifetimes, and polarizabilities in rubidium,” Phys. Rev. A 69, 022509 (2004). [CrossRef]
  41. S. K. Dutta, D. Feldbaum, A. Walz-Flannigan, J. R. Guest, and G. Raithel, “High-angular-momentum states in cold Rydberg gasses,” Phys. Rev. Lett. 86, 3993–3996 (2001). [CrossRef] [PubMed]
  42. W. Li, M. W. Noel, M. P. Robinson, P. J. Tanner, T. F. Gallagher, D. Comparat, B. Laburthe Tolra, N. Vanhaecke, T. Vogt, N. Zahzam, P. Pillet, and D. A. Tate, “Evolution dynamics of a dense frozen Rydberg gas to plasma,” Phys. Rev. A 70, 042713 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited