OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17030–17039

Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging

Teng Luo, Peng Huang, Guo Gao, Guangxia Shen, Shen Fu, Daxiang Cui, Chuanqing Zhou, and Qiushi Ren  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17030-17039 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Indocyanine green-loaded mesoporous silica-coated gold nanorods (ICG-loaded Au@SiO2) were prepared for the dual capability of X-ray computed tomography (CT) and fluorescence imaging. X-ray CT scanning showed that ICG-loaded Au@SiO2 could provide significant contrast enhancement; Near-infrared fluorescence generated by the nanomaterial was present up to 12 h post intratumoral injection, thus enabling ICG-loaded Au@SiO2 to be used as a promising dual mode imaging contrast agent. Multiplexed images can be more easily obtained with this novel type of multimodal nanostructure compared with traditional contrast agents. The dual mode imaging probe has great potential for use in applications such as cancer targeting, molecular imaging in combination with radiotherapy, and photothermolysis.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(260.2510) Physical optics : Fluorescence
(340.7440) X-ray optics : X-ray imaging
(160.4236) Materials : Nanomaterials

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 20, 2011
Revised Manuscript: August 7, 2011
Manuscript Accepted: August 9, 2011
Published: August 16, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Teng Luo, Peng Huang, Guo Gao, Guangxia Shen, Shen Fu, Daxiang Cui, Chuanqing Zhou, and Qiushi Ren, "Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging," Opt. Express 19, 17030-17039 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. .I. Hizoh and C. Haller, “Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress,” Invest. Radiol. 37(8), 428–434 (2002). [CrossRef] [PubMed]
  2. .C. Haller and I. Hizoh, “The cytotoxicity of iodinated radiocontrast agents on renal cells in vitro,” Invest. Radiol. 39(3), 149–154 (2004). [CrossRef] [PubMed]
  3. .H. B. Na, I. C. Song, and T. Hyeon, “Inorganic nanoparticles for MRI contrast agents,” Adv. Mater. (Deerfield Beach Fla.) 21(21), 2133–2148 (2009). [CrossRef]
  4. .A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. Engl. 46(8), 1222–1244 (2007). [CrossRef] [PubMed]
  5. .J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: Recent progress and present challenges,” Adv. Mater. (Deerfield Beach Fla.) 18(15), 1953–1964 (2006). [CrossRef]
  6. .M. S. Han, A. K. R. Lytton-Jean, B. K. Oh, J. Heo, and C. A. Mirkin, “Colorimetric screening of DNA-binding molecules with gold nanoparticle probes,” Angew. Chem. Int. Ed. Engl. 45(11), 1807–1810 (2006). [CrossRef] [PubMed]
  7. .L. L. Ma, M. D. Feldman, J. M. Tam, A. S. Paranjape, K. K. Cheruku, T. A. Larson, J. O. Tam, D. R. Ingram, V. Paramita, J. W. Villard, J. T. Jenkins, T. Wang, G. D. Clarke, R. Asmis, K. Sokolov, B. Chandrasekar, T. E. Milner, and K. P. Johnston, “Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy,” ACS Nano 3(9), 2686–2696 (2009). [CrossRef] [PubMed]
  8. .C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008). [CrossRef] [PubMed]
  9. .P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, “Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents,” Eur. J. Radiol. 75(1), 104–109 (2010). [CrossRef] [PubMed]
  10. .J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, “Gold nanoparticles: a new X-ray contrast agent,” Br. J. Radiol. 79(939), 248–253 (2006). [CrossRef] [PubMed]
  11. .D. Kim, S. Park, J. H. Lee, Y. Y. Jeong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” J. Am. Chem. Soc. 129(24), 7661–7665 (2007). [CrossRef] [PubMed]
  12. .Q. Y. Cai, S. H. Kim, K. S. Choi, S. Y. Kim, S. J. Byun, K. W. Kim, S. H. Park, S. K. Juhng, and K. H. Yoon, “Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice,” Invest. Radiol. 42(12), 797–806 (2007). [CrossRef] [PubMed]
  13. .R. Guo, H. Wang, C. Peng, M. W. Shen, M. J. Pan, X. Y. Cao, G. X. Zhang, and X. Y. Shi, “X-ray attenuation property of dendrimer-entrapped gold nanoparticles,” J. Phys. Chem. C 114(1), 50–56 (2010). [CrossRef]
  14. .V. Kattumuri, K. Katti, S. Bhaskaran, E. J. Boote, S. W. Casteel, G. M. Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan, and K. V. Katti, “Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies,” Small 3(2), 333–341 (2007). [CrossRef] [PubMed]
  15. .H. Wang, L. Zheng, C. Peng, R. Guo, M. Shen, X. Shi, and G. Zhang, “Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles,” Biomaterials 32(11), 2979–2988 (2011). [CrossRef] [PubMed]
  16. .C. J. Hall, E. Schültke, L. Rigon, K. Ataelmannan, S. Rigley, R. Menk, F. Arfelli, G. Tromba, S. Pearson, S. Wilkinson, A. Round, S. Crittell, R. Griebel, and B. H. J. Juurlink, “Synchrotron-based in vivo tracking of implanted mammalian cells,” Eur. J. Radiol. 68(3Suppl), S156–S159 (2008). [CrossRef] [PubMed]
  17. .R. Popovtzer, A. Agrawal, N. A. Kotov, A. Popovtzer, J. Balter, T. E. Carey, and R. Kopelman, “Targeted gold nanoparticles enable molecular CT imaging of cancer,” Nano Lett. 8(12), 4593–4596 (2008). [CrossRef] [PubMed]
  18. .W. Eck, A. I. Nicholson, H. Zentgraf, W. Semmler, and S. Bartling, “Anti-CD4-targeted gold nanoparticles induce specific contrast enhancement of peripheral lymph nodes in X-ray computed tomography of live mice,” Nano Lett. 10(7), 2318–2322 (2010). [CrossRef] [PubMed]
  19. .D. Kim, Y. Y. Jeong, and S. Jon, “A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer,” ACS Nano 4(7), 3689–3696 (2010). [CrossRef] [PubMed]
  20. .J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Phys. Med. Biol. 49(18), N309–N315 (2004). [CrossRef] [PubMed]
  21. .J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” J. Pharm. Pharmacol. 60(8), 977–985 (2008). [CrossRef] [PubMed]
  22. .Z. B. Li, W. Cai, and X. Chen, “Semiconductor quantum dots for in vivo imaging,” J. Nanosci. Nanotechnol. 7(8), 2567–2581 (2007). [CrossRef] [PubMed]
  23. .Y. Kong, J. Chen, F. Gao, W. Li, X. Xu, O. Pandoli, H. Yang, J. Ji, and D. Cui, “A multifunctional ribonuclease-A-conjugated CdTe quantum dot cluster nanosystem for synchronous cancer imaging and therapy,” Small 6(21), 2367–2373 (2010). [CrossRef] [PubMed]
  24. .C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, “Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution,” Adv. Funct. Mater. 19(2), 215–222 (2009). [CrossRef]
  25. .W. S. Kuo, C. N. Chang, Y. T. Chang, M. H. Yang, Y. H. Chien, S. J. Chen, and C. S. Yeh, “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angew. Chem. Int. Ed. Engl. 49(15), 2711–2715 (2010). [PubMed]
  26. .J. S. Souris, C. H. Lee, S. H. Cheng, C. T. Chen, C. S. Yang, J. A. Ho, C. Y. Mou, and L. W. Lo, “Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles,” Biomaterials 31(21), 5564–5574 (2010). [CrossRef] [PubMed]
  27. .M. Xiao, J. Nyagilo, V. Arora, P. Kulkarni, D. Xu, X. Sun, and D. P. Davé, “Gold nanotags for combined multi-colored Raman spectroscopy and x-ray computed tomography,” Nanotechnology 21(3), 035101 (2010). [CrossRef] [PubMed]
  28. .C. Alric, J. Taleb, G. Le Duc, C. Mandon, C. Billotey, A. Le Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, and O. Tillement, “Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging,” J. Am. Chem. Soc. 130(18), 5908–5915 (2008). [CrossRef] [PubMed]
  29. .C. Alric, R. Serduc, C. Mandon, J. Taleb, G. Le Duc, A. Le Meur-Herland, C. Billotey, P. Perriat, S. Roux, and O. Tillement, “Gold nanoparticles designed for combining dual modality imaging and radiotherapy,” Gold Bull. 41(2), 90–97 (2008). [CrossRef]
  30. .P. Huang, Z. Li, J. Lin, D. Yang, G. Gao, C. Xu, L. Bao, C. Zhang, K. Wang, H. Song, H. Hu, and D. Cui, “Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy,” Biomaterials 32(13), 3447–3458 (2011). [CrossRef] [PubMed]
  31. .M. M. van Schooneveld, D. P. Cormode, R. Koole, J. T. van Wijngaarden, C. Calcagno, T. Skajaa, J. Hilhorst, D. C. ’t Hart, Z. A. Fayad, W. J. M. Mulder, and A. Meijerink, “A fluorescent, paramagnetic and PEGylated gold/silica nanoparticle for MRI, CT and fluorescence imaging,” Contrast Media Mol. Imaging 5(4), 231–236 (2010). [CrossRef] [PubMed]
  32. .X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  33. .L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007). [CrossRef] [PubMed]
  34. .Z. Li, P. Huang, X. Zhang, J. Lin, S. Yang, B. Liu, F. Gao, P. Xi, Q. Ren, and D. Cui, “RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy,” Mol. Pharm. 7(1), 94–104 (2010). [CrossRef] [PubMed]
  35. .Y. S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, and S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010). [CrossRef] [PubMed]
  36. .C. G. Wang, Y. Chen, T. T. Wang, Z. F. Ma, and Z. M. Su, “Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing,” Adv. Funct. Mater. 18(2), 355–361 (2008). [CrossRef]
  37. .G. von Maltzahn, A. Centrone, J. Park, R. Ramanathan, M. Sailor, T. Hatton, and S. Bhatia, “SERS-coded Gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating,” Adv. Mater. (Deerfield Beach Fla.) 21(31), 3175–3180 (2009). [CrossRef]
  38. .C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006). [CrossRef] [PubMed]
  39. .B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui, “End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization,” Nanotechnology 16(9), 1776–1780 (2005). [CrossRef]
  40. .C. Murphy and N. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater. (Deerfield Beach Fla.) 14(1), 80–82 (2002). [CrossRef]
  41. .X. Li, F. J. Kao, C. C. Chuang, and S. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18(11), 11335–11346 (2010). [CrossRef] [PubMed]
  42. .T. Zhao, H. Wu, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization,” Langmuir 26(18), 14937–14942 (2010). [CrossRef] [PubMed]
  43. .W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968). [CrossRef]
  44. .B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-Assembly Of Gold Nanorods,” J. Phys. Chem. B 104(36), 8635–8640 (2000). [CrossRef]
  45. .E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, and H. S. Kim, “Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles,” J. Am. Chem. Soc. 127(10), 3270–3271 (2005). [CrossRef] [PubMed]
  46. .E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, and M. Zamkov, “Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites,” Nano Lett. 11(4), 1792–1799 (2011). [CrossRef] [PubMed]
  47. .W. Krause, “Delivery of diagnostic agents in computed tomography,” Adv. Drug Deliv. Rev. 37(1-3), 159–173 (1999). [CrossRef] [PubMed]
  48. .M. Banna and P. S. Olutola, “Orbital histiocytosis on computed tomography,” J. Comput. Tomogr. 7(2), 167–170 (1983). [CrossRef] [PubMed]
  49. .F. Büther, L. Stegger, M. Dawood, F. Range, M. Schäfers, R. Fischbach, T. Wichter, O. Schober, and K. P. Schäfers, “Effective methods to correct contrast agent-induced errors in PET quantification in cardiac PET/CT,” J. Nucl. Med. 48(7), 1060–1068 (2007). [CrossRef] [PubMed]
  50. .F. A. Dilmanian, X. Y. Wu, E. C. Parsons, B. Ren, J. Kress, T. M. Button, L. D. Chapman, J. A. Coderre, F. Giron, D. Greenberg, D. J. Krus, Z. Liang, S. Marcovici, M. J. Petersen, C. T. Roque, M. Shleifer, D. N. Slatkin, W. C. Thomlinson, K. Yamamoto, and Z. Zhong, “Single-and dual-energy CT with monochromatic synchrotron x-rays,” Phys. Med. Biol. 42(2), 371–387 (1997). [CrossRef] [PubMed]
  51. .C. Xu, G. A. Tung, and S. Sun, “Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography,” Chem. Mater. 20(13), 4167–4169 (2008). [CrossRef] [PubMed]
  52. .M. Vallet-Regí, F. Balas, and D. Arcos, “Mesoporous materials for drug delivery,” Angew. Chem. Int. Ed. Engl. 46(40), 7548–7558 (2007). [CrossRef] [PubMed]
  53. .I. I. Slowing, B. G. Trewyn, and V. S. Y. Lin, “Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins,” J. Am. Chem. Soc. 129(28), 8845–8849 (2007). [CrossRef] [PubMed]
  54. .R. Rajagopalan, P. Uetrecht, J. E. Bugaj, S. A. Achilefu, and R. B. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71(3), 347–350 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited