OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17092–17098

Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy

Chih-Yi Liu, Keng-Chih Liang, Waileong Chen, Chia-hao Tu, Chuan-Pu Liu, and Yonhua Tzeng  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17092-17098 (2011)
http://dx.doi.org/10.1364/OE.19.017092


View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on strong plasmonic coupling from silver nanoparticles covered by hydrogen-terminated chemically vapor deposited single-layer graphene, and its effects on the detection and identification of adenine molecules through surface-enhanced Raman spectroscopy (SERS). The high resistivity of the graphene after subjecting to remote plasma hydrogenation allows plasmonic coupling induced strong local electromagnetic fields among the silver nanoparticles to penetrate the graphene, and thus enhances the SERS efficiency of adenine molecules adsorbed on the film. The graphene layer protects the nanoparticles from reactive and harsh environments and provides a chemically inert and biocompatible carbon surface for SERS applications.

© 2011 OSA

OCIS Codes
(230.0250) Optical devices : Optoelectronics
(240.0240) Optics at surfaces : Optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: July 15, 2011
Revised Manuscript: August 10, 2011
Manuscript Accepted: August 11, 2011
Published: August 16, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Chih-Yi Liu, Keng-Chih Liang, Waileong Chen, Chia-hao Tu, Chuan-Pu Liu, and Yonhua Tzeng, "Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced Raman spectroscopy," Opt. Express 19, 17092-17098 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17092


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128(49), 15580–15581 (2006). [CrossRef] [PubMed]
  2. F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005). [CrossRef] [PubMed]
  3. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006). [CrossRef]
  4. T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009). [CrossRef] [PubMed]
  5. C.-H. Huang, H.-Y. Lin, B.-C. Lau, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010). [CrossRef] [PubMed]
  6. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004). [CrossRef]
  7. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008). [CrossRef] [PubMed]
  8. C. H. Huang, H.-Y. Lin, S. Chen, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors,” Opt. Express 19(12), 11441–11450 (2011). [CrossRef] [PubMed]
  9. C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010). [CrossRef]
  10. L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009). [CrossRef] [PubMed]
  11. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010). [CrossRef] [PubMed]
  12. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009). [CrossRef] [PubMed]
  13. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006). [CrossRef] [PubMed]
  14. M. E. Kompan and D. S. Krylov, “Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy,” Tech. Phys. Lett. 36(12), 1140–1142 (2010). [CrossRef]
  15. C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986). [CrossRef]
  16. H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004). [CrossRef]
  17. N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006). [CrossRef] [PubMed]
  18. J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997). [CrossRef]
  19. K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011). [CrossRef] [PubMed]
  20. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005). [CrossRef] [PubMed]
  21. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010). [CrossRef] [PubMed]
  22. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006). [CrossRef] [PubMed]
  23. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008). [CrossRef]
  24. K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited