OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17189–17202

Tracking rotational diffusion of colloidal clusters

Gary L. Hunter, Kazem V. Edmond, Mark T. Elsesser, and Eric R. Weeks  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17189-17202 (2011)
http://dx.doi.org/10.1364/OE.19.017189


View Full Text Article

Enhanced HTML    Acrobat PDF (1207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a novel method of tracking the rotational motion of clusters of colloidal particles. Our method utilizes rigid body transformations to determine the rotations of a cluster and extends conventional proven particle tracking techniques in a simple way, thus facilitating the study of rotational dynamics in systems containing or composed of colloidal clusters. We test our method by measuring dynamical properties of simulated Brownian clusters under conditions relevant to microscopy experiments. We then use the technique to track and describe the motions of a real colloidal cluster imaged with confocal microscopy.

© 2011 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(000.4430) General : Numerical approximation and analysis
(100.2000) Image processing : Digital image processing
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(100.4999) Image processing : Pattern recognition, target tracking

ToC Category:
Microscopy

History
Original Manuscript: July 13, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 8, 2011
Published: August 17, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Gary L. Hunter, Kazem V. Edmond, Mark T. Elsesser, and Eric R. Weeks, "Tracking rotational diffusion of colloidal clusters," Opt. Express 19, 17189-17202 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17189


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kose, M. Ozaki, K. Takano, Y. Kobayashi, and S. Hachisu, “Direct observation of ordered latex suspension by metallurgical microscope,” J. Colloid Interface Sci. 44, 330–338 (1973). [CrossRef]
  2. D. J. W. Aastuen, N. A. Clark, L. K. Cotter, and B. J. Ackerson, “Nucleation and growth of colloidal crystals,” Phys. Rev. Lett. 57, 1733–1736 (1986). [CrossRef] [PubMed]
  3. C. A. Murray and D. H. Van Winkle, “Experimental observation of two-stage melting in a classical two-dimensional screened coulomb system,” Phys. Rev. Lett. 58, 1200–1203 (1987). [CrossRef] [PubMed]
  4. E. B. Sirota, H. D. O. Yang, S. K. Sinha, P. M. Chaikin, J. D. Axe, and Y. Fujii, “Complete phase diagram of a charged colloidal system: a synchrotron x-ray scattering study,” Phys. Rev. Lett. 62, 1524–1527 (1989). [CrossRef] [PubMed]
  5. P. N. Pusey and W. van Megen, “Phase behaviour of concentrated suspensions of nearly hard colloidal spheres,” Nature 320, 340–342 (1986). [CrossRef]
  6. P. N. Pusey and W. van Megen, “Observation of a glass transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett. 59, 2083–2086 (1987). [CrossRef] [PubMed]
  7. P. N. Pusey, W. C. K. Poon, S. M. Ilett, and P. Bartlett, “Phase behaviour and structure of colloidal suspensions,” J. Phys. Condens. Matter 6, A29–A36 (1994). [CrossRef]
  8. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000). [CrossRef] [PubMed]
  9. J. R. Savage, D. W. Blair, A. J. Levine, R. A. Guyer, and A. D. Dinsmore, “Imaging the sublimation dynamics of colloidal crystallites,” Science 314, 795–798 (2006). [CrossRef] [PubMed]
  10. D. H. Van Winkle and C. A. Murray, “Layering transitions in colloidal crystals as observed by diffraction and direct-lattice imaging,” Phys. Rev. A 34, 562–573 (1986). [CrossRef] [PubMed]
  11. C. A. Murray, W. O. Sprenger, and R. A. Wenk, “Comparison of melting in three and two dimensions: microscopy of colloidal spheres,” Phys. Rev. B 42, 688–703 (1990). [CrossRef]
  12. D. G. Grier and C. A. Murray, “The microscopic dynamics of freezing in supercooled colloidal fluids,” J. Chem. Phys. 100, 9088–9095 (1994). [CrossRef]
  13. U. Gasser, E. R. Weeks, A. Schofield, P. N. Pusey, and D. A. Weitz, “Real-space imaging of nucleation and growth in colloidal crystallization,” Science 292, 258–262 (2001). [CrossRef] [PubMed]
  14. J. Hernández-Guzmán and E. R. Weeks, “The equilibrium intrinsic crystal-liquid interface of colloids,” Proc. Natl. Acad. Sci. U.S.A. 106, 15198–15202 (2009). [CrossRef] [PubMed]
  15. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  16. A. D. Dinsmore, E. R. Weeks, V. Prasad, A. C. Levitt, and D. A. Weitz, “Three-dimensional confocal microscopy of colloids,” Appl. Opt. 40, 4152–4159 (2001). [CrossRef]
  17. E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, “Hydrodynamic coupling of two Brownian spheres to a planar surface,” Phys. Rev. Lett. 85, 3317–3320 (2000). [CrossRef] [PubMed]
  18. C. R. Nugent, K. V. Edmond, H. N. Patel, and E. R. Weeks, “Colloidal glass transition observed in confinement,” Phys. Rev. Lett. 99, 025702 (2007). [CrossRef] [PubMed]
  19. R. Besseling, E. R. Weeks, A. B. Schofield, and W. C. K. Poon, “Three-dimensional imaging of colloidal glasses under steady shear,” Phys. Rev. Lett. 99, 028301 (2007). [CrossRef] [PubMed]
  20. P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern flow in colloidal glasses,” Science 318, 1895–1899 (2007). [CrossRef] [PubMed]
  21. D. Chen, D. Semwogerere, J. Sato, V. Breedveld, and E. R. Weeks, “Microscopic structural relaxation in a sheared supercooled colloidal liquid,” Phys. Rev. E 81, 011403 (2010). [CrossRef]
  22. S. Martin, M. Reichert, H. Stark, and T. Gisler, “Direct observation of hydrodynamic rotation-translation coupling between two colloidal spheres,” Phys. Rev. Lett. 97, 248301 (2006). [CrossRef]
  23. S. M. Anthony, L. Hong, M. Kim, and S. Granick, “Single-particle colloid tracking in four dimensions,” Langmuir 22, 9812–9815 (2006). [CrossRef] [PubMed]
  24. P. J. Yunker, K. Chen, Z. Zhang, W. G. Ellenbroek, A. J. Liu, and A. G. Yodh, “Rotational and translational phonon modes in glasses composed of ellipsoidal particles,” Phys. Rev. E 83, 011403 (2011). [CrossRef]
  25. L. Hong, S. M. Anthony, and S. Granick, “Rotation in suspension of a rod-shaped colloid,” Langmuir 22, 7128–7131 (2006). [CrossRef] [PubMed]
  26. Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh, “Brownian motion of an ellipsoid,” Science 314, 626–630 (2006). [CrossRef] [PubMed]
  27. D. Mukhija and M. J. Solomon, “Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy,” J. Colloid Interface Sci. 314, 98–106 (2007). [CrossRef] [PubMed]
  28. V. N. Manoharan, M. T. Elsesser, and D. J. Pine, “Dense packing and symmetry in small clusters of microspheres,” Science 301, 483–487 (2003). [CrossRef] [PubMed]
  29. M. T. Elsesser, A. D. Hollingsworth, K. V. Edmond, and D. J. Pine, “Large core-shell poly(methyl methacrylate) colloidal clusters: synthesis, characterization, and tracking,” Langmuir 27, 917–927 (2011). [CrossRef]
  30. A. van Blaaderen, “Chemistry: colloidal molecules and beyond,” Science 301, 470–471 (2003). [CrossRef]
  31. A. van Blaaderen, “Materials science: colloids get complex,” Nature 439, 545–546 (2006). [CrossRef] [PubMed]
  32. S. C. Glotzer and M. J. Solomon, “Anisotropy of building blocks and their assembly into complex structures,” Nature Mater. 6, 557–562 (2007). [CrossRef]
  33. S. M. Anthony, M. Kim, and S. Granick, “Translation-rotation decoupling of colloidal clusters of various symmetries,” J. Chem. Phys. 129, 244701 (2008). [CrossRef]
  34. J. Challis, “A procedure for determining rigid body transformation parameters,” J. Biomech. 28, 733–737 (1995). [CrossRef] [PubMed]
  35. HYDRO++, http://leonardo.inf.um.es/macromol/programs/hydro++/hydro++.htm .
  36. M. G. Mazza, N. Giovambattista, F. W. Starr, and H. E. Stanley, “Relation between rotational and translational dynamic heterogeneities in water,” Phys. Rev. Lett. 96, 057803 (2006). [CrossRef] [PubMed]
  37. M. G. Mazza, N. Giovambattista, H. E. Stanley, and F. W. Starr, “Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes–Einstein and Stokes–Einstein–Debye relations in water,” Phys. Rev. E 76, 031203 (2007). [CrossRef]
  38. S. Kämmerer, W. Kob, and R. Schilling, “Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules,” Phys. Rev. E 56, 5450–5461 (1997). [CrossRef]
  39. B. J. Berne, P. Pechukas, and G. D. Harp, “Molecular reorientation in liquids and gases,” J. Chem. Phys. 49, 3125–3129 (1968). [CrossRef]
  40. G. Williams, “Time-correlation functions and molecular motions,” Chem. Soc. Rev. 7, 89–131 (1978). [CrossRef]
  41. M. Hoffmann, C. S. Wagner, L. Harnau, and A. Wittemann, “3D Brownian diffusion of submicron-sized particle clusters,” ACS Nano 3, 3326–3334 (2009). [CrossRef] [PubMed]
  42. F. Perrin, “Étude mathématique du mouvement Brownien de rotation,” Ann. Sci. Ec. Normale Super. 45, 1–51 (1928).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited