OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17336–17343

Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meißner, and M.-C. Amann  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17336-17343 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (9370 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time a vertical-cavity surface-emitting laser (VCSEL) with a single-mode wavelength-tuning over 102nm in the range of 1550nm is demonstrated. The fiber-coupled optical output power has a maximum of 3.5mW and is > 2mW over the entire tuning range. The sidemode suppression ratios are > 45dB. The wavelength tuning is achieved with the micro-electro mechanical actuation of a mirror membrane fabricated with surface micro-machining for on-wafer mass production. The mirror membrane consists of low cost dielectric materials (SiO x /SiN y ) deposited with low temperature (< 100°C) Plasma Enhanced Chemical Vapor Deposition (PECVD).

© 2011 OSA

OCIS Codes
(140.3600) Lasers and laser optics : Lasers, tunable
(230.4685) Optical devices : Optical microelectromechanical devices
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 16, 2011
Revised Manuscript: August 5, 2011
Manuscript Accepted: August 7, 2011
Published: August 18, 2011

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meißner, and M.-C. Amann, "Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning," Opt. Express 19, 17336-17343 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Rausch, P. Heinickel, R. Werthschuetzky, B. Koegel, K. Zogal, and P. Meissner, “Experimental comparison of piezoresistive MEMS and fiber Bragg grating strain sensors,” in IEEE Sensors (IEEE, 2009), pp. 1329–1333. [CrossRef]
  2. T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ gas detection and identification,” IEEE Sensors (IEEE, 2007), pp. 1368–1371. [CrossRef]
  3. B. Kogel, H. Halbritter, S. Jatta, M. Maute, G. Bohm, M.-C. Amann, M. Lackner, M. Schwarzott, F. Winter, and P. Meissner, “Simultaneous spectroscopy of NH3 and CO using a > 50 nm continuously tunable MEMS-VCSEL,” IEEE Sens. J. 7, 1483–1489 (2007). [CrossRef]
  4. B. Kogel, H. Halbritter, M. Lackner, M. Schwarzott, M. Maute, M.-C. Amann, F. Winter, and P. Meissner, “Micromechanically widely tunable VCSEL for absorption spectroscopy at around 1.55μm,” International Conference on Optical MEMS and Their Applications IEEE/LEOS (IEEE, 2006), pp. 7–8. [CrossRef]
  5. C. Gierl, K. Zogal, S. Jatta, H. A. Davani, F. Kueppers, P. Meissner, T. Gruendl, C. Grasse, M.-C. Amann, A. Daly, B. Corbett, B. Koegel, A. Haglund, J. Gustavsson, P. Westbergh, A. Larsson, P. Debernardi, and M. Ortsiefer, “Tuneable VCSEL aiming for the application in interconnects and short haul systems,” Proc. SPIE 7959, 795908 (2011). [CrossRef]
  6. D. Sun, W. Fan, P. Kner, J. Boucart, T. Kagexama, D. Zhang, R. Pathak, R. F. Nabiev, and W. Yuen, “Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure,” IEEE Photon. Technol. Lett. 16, 714–716 (2004) [CrossRef]
  7. K. J. Knopp, D. Vakhshoori, P. D. Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakithab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, R. Gurjar, P. Tayebati, D. MacDaniel, R. Baorui, P. Waterson, and G. VanderRhodes, “High power MEMs-tunable vertical-cavity surface-emitting lasers,” IEEE Digest of the LEOS Summer Topical Meetings (IEEE,2001), pp. 31–32.
  8. G. D. Cole, E. S. Bjorlin, C. S. Wang, N. C. MacDonald, and J. E. Bowers, “Widely tunable bottom-emitting vertical-cavity SOAs,” IEEE Photon. Technol. Lett. 17, 2526–2528 (2005). [CrossRef]
  9. T. Yano, H. Saito, N. Kanbara, R. Noda, S. Tezuka, N. Fujimura, M. Ooyama, T. Watanabe, T. Hirata, and N. Nishiyama, “Wavelength modulation over 500kHz of micromechanically tunable InP-based VCSELs with Si-MEMS technology,” IEEE 21st ISLC (IEEE, 2008), pp. 163–164.
  10. S. Jatta, B. Koegel, M. Maute, K. Zogal, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Bulk-Micromachined VCSEL At 1.55μm With 76-nm Single-Mode Continuous Tuning Range,” IEEE Photon. Technol. Lett. 21, 1822–1824 (2009). [CrossRef]
  11. H. Halbritter, F. Riemenschneider, B. Kogel, A. Tarraj, M. Strassner, S. Irmer, H. Hillmer, I. Sagnes, and P. Meissner, “MEM-tunable and wavelength selective receiver front end,” 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2005), pp. 68–71. [CrossRef]
  12. C. Gierl, K. Zogal, H. A. Davani, and P. Meissner, “Electro thermal and electro statical actuation of a surface micromachined tunable Fabry-Pérot filter,” Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (IEEE, 2011), JTuI73. [PubMed]
  13. K. Iga, “Surface-emitting laser—its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000). [CrossRef]
  14. M. C. Y. Huang, B. C. Kan, Z. Ye, A. P. Pisano, and C. J. Chang-Hasnain, “Monolithic integrated piezoelectric MEMS-tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 13, 374–380 (2007). [CrossRef]
  15. B. C. Kan, M. C. Y. Huang, Z. Ye, S. P. Alvaro, C. J. Hasnain, and P. A. Pisano, “Monolithic integration of piezoelectric cantilever in tunable VCSEL,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2006), pp. 11–12.
  16. H. Sano, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm VCSEL with thermally actuated cantilever structure,” 35th European Conference on Optical Communication (IEEE, 2009), P2.26, pp. 1–2.
  17. B. Kogel, H. Halbritter, M. Maute, G. Bohm, M.-C. Amann, and P. Meissner, “Singlemode and polarization stable MEMS-VCSEL with broadband tuning characteristics around 1.55μm,” European Conference on Optical Communications (IEEE, 2006), 10.1109/ECOC.2006.4801075, pp. 1–2. [CrossRef]
  18. P. Tayebati, W. Peidong, D. Vakshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, “Half-symmetric cavity tunable microelectromechanical VCSEL with single spatial mode,” IEEE Photon. Technol. Lett. 10, 1679–1681 (1998). [CrossRef]
  19. P. Debernardi, B. Kogel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Boehm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: comparison of experiment and modeling,” IEEE J. Sel. Top. Quantum Electron. 44, 391–399 (2008). [CrossRef]
  20. B. Kogel, M. Maute, H. Halbritter, F. Riemenschneider, G. Bohm, M.-C. Amann, and P. Meissner, “Long-wavelength MEMS tunable VCSEL with high sidemode suppression,” International Conference on Optical MEMS and Their Applications (IEEE/LEOS, 2005), pp. 95–96. [CrossRef]
  21. F. Sugihwo, M. C. Larson, and J. S. Harris, “Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range,” Appl. Phys. Lett. 70, 547 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited