OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17439–17452

Depth-resolved image mapping spectrometer (IMS) with structured illumination

Liang Gao, Noah Bedard, Nathan Hagen, Robert T. Kester, and Tomasz S. Tkaczyk  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17439-17452 (2011)
http://dx.doi.org/10.1364/OE.19.017439


View Full Text Article

Enhanced HTML    Acrobat PDF (1666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a depth-resolved Image Mapping Spectrometer (IMS) which is capable of acquiring 4D (x, y, z, λ) datacubes. Optical sectioning is implemented by structured illumination. The device’s spectral imaging performance is demonstrated in a multispectral microsphere and mouse kidney tissue fluorescence imaging experiment. We also compare quantitatively the depth-resolved IMS with a hyperspectral confocal microscope (HCM) in a standard fluorescent bead imaging experiment. The comparison results show that despite the use of a light source with four orders of magnitude lower intensity in the IMS than that in the HCM, the image signal-to-noise ratio acquired by the IMS is 2.6 times higher than that achieved by the equivalent confocal approach.

© 2011 OSA

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.2520) Microscopy : Fluorescence microscopy
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 11, 2011
Revised Manuscript: August 17, 2011
Manuscript Accepted: August 18, 2011
Published: August 19, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Liang Gao, Noah Bedard, Nathan Hagen, Robert T. Kester, and Tomasz S. Tkaczyk, "Depth-resolved image mapping spectrometer (IMS) with structured illumination," Opt. Express 19, 17439-17452 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Lichtman and J. A. Conchello, “Fluorescence microscopy,” Nat. Methods2(12), 910–919 (2005). [CrossRef] [PubMed]
  2. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct.27(5), 367–374 (2002). [CrossRef] [PubMed]
  3. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett.546(1), 87–92 (2003). [CrossRef] [PubMed]
  4. V. Raicu, M. R. Stoneman, R. Fung, M. Melnichuk, D. B. Jansma, L. F. Pisterzi, S. Rath, M. Fox, J. W. Wells, and D. K. Saldin, “Determination of supramolecular structure and spatial distribution of protein complexes in living cells,” Nat. Photonics3(2), 107–113 (2009). [CrossRef]
  5. S. Kumazaki, M. Hasegawa, M. Ghoneim, Y. Shimizu, K. Okamoto, M. Nishiyama, H. Oh-Oka, and M. Terazima, “A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120,” J. Microsc.228(Pt 2), 240–254 (2007). [CrossRef] [PubMed]
  6. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy - acoustooptic and liquid-crystal tunable filters,” Appl. Spectrosc.48(7), 857–866 (1994). [CrossRef]
  7. B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J.80(2), 986–993 (2001). [CrossRef] [PubMed]
  8. C. F. Cull, K. Choi, D. J. Brady, and T. Oliver, “Identification of fluorescent beads using a coded aperture snapshot spectral imager,” Appl. Opt.49(10), B59–B70 (2010). [CrossRef] [PubMed]
  9. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express18(6), 5602–5608 (2010). [CrossRef] [PubMed]
  10. L. Gao, R. T. Kester, and T. S. Tkaczyk, “Compact image slicing spectrometer (ISS) for hyperspectral fluorescence microscopy,” Opt. Express17(15), 12293–12308 (2009). [CrossRef] [PubMed]
  11. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express18(14), 14330–14344 (2010). [CrossRef] [PubMed]
  12. R. T. Kester, N. Bedard, L. Gao, and T. S. Tkaczyk, “Real-time snapshot hyperspectral imaging endoscope,” J. Biomed. Opt.16(5), 056005 (2011). [CrossRef] [PubMed]
  13. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997). [CrossRef] [PubMed]
  14. D. Karadaglić and T. Wilson, “Image formation in structured illumination wide-field fluorescence microscopy,” Micron39(7), 808–818 (2008). [CrossRef] [PubMed]
  15. T. Zimmermann, “Spectral imaging and linear unmixing in light microscopy,” in Advances in Biochemical Engineering Biotechnology, T. Scheper, ed. (Springer, 2005).
  16. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J.80(4), 2029–2036 (2001). [CrossRef] [PubMed]
  17. J. Xiao, “Single-molecule imaging in live cells,” in Handbook of Single-Molecule Biophysics, P. Hinterdorfer and A. V. Oijen, eds. (Springer, 2009).
  18. J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed. (Springer, 2006).
  19. H. Photonics, “Characteristics of Photomultiplier Tubes” in Photomultiplier Tubes: Basics and Applications, 2nd ed. (1999), p. 71.
  20. The Molecular Probes Handbook, Invitrogen, Inc.
  21. P. J. Shaw, “Comparison of widefield/deconvolution and confocal microscopy for three-dimensional imaging,” in Handbook of Biological Confocal Microscopy, 3rd. ed., J. B. Pawley, ed. (Springer, 2006)
  22. R. Dixit and R. Cyr, “Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy,” Plant J.36(2), 280–290 (2003). [CrossRef] [PubMed]
  23. Y. Sako, A. Sekihata, Y. Yanagisawa, M. Yamamoto, Y. Shimada, K. Ozaki, and A. Kusumi, “Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1,” J. Microsc.185(Pt 1), 9–20 (1997). [CrossRef] [PubMed]
  24. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science305(5686), 1007–1009 (2004). [CrossRef] [PubMed]
  25. Fairchild, Inc., Andor, Inc., and PCO, Inc., “sCMOS data sheet,” http://www.scmos.com/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (2294 KB)      QuickTime
» Media 2: MOV (2010 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited