OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17599–17608

Single-cycle radio-frequency pulse generation by an optoelectronic oscillator

Etgar C. Levy and Moshe Horowitz  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17599-17608 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (992 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate experimentally passive mode-locking of an optoelectronic oscillator which generates a single-cycle radio-frequency pulse train. The measured pulse to pulse jitter was less than 5 ppm of the round-trip duration. The pulse waveform was repeated each round-trip. This result indicates that the relative phase between the pulse envelope and the carrier wave is autonomously locked. The results demonstrate, for the first time, that single-cycle pulses can be directly generated by a passive mode-locked oscillator. The passive mode-locked optoelectronic oscillator is important for developing novel radars and radio-frequency pulsed sources and it enables studying directly the physics of single-cycle pulse generation.

© 2011 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.0250) Optical devices : Optoelectronics
(230.4910) Optical devices : Oscillators
(320.5550) Ultrafast optics : Pulses

ToC Category:
Ultrafast Optics

Original Manuscript: May 31, 2011
Revised Manuscript: July 12, 2011
Manuscript Accepted: July 22, 2011
Published: August 23, 2011

Etgar C. Levy and Moshe Horowitz, "Single-cycle radio-frequency pulse generation by an optoelectronic oscillator," Opt. Express 19, 17599-17608 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. J. DeMaria, D. A. Stetsen, and H. Heyman, “Experimental study of mode-locked Ruby laser,” Appl. Phys. Lett. 8, 22 (1966). [CrossRef]
  2. C. V. Shank and E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974). [CrossRef]
  3. S. Namiki, X. Yu, and H. A. Haus, “Observation of nearly quantum-limited timing jitter in an all-fiber ring laser,” J. Opt. Soc. Am. B 13, 2817–2823 (1996). [CrossRef]
  4. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975). [CrossRef]
  5. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999). [CrossRef]
  6. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirrorassisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999). [CrossRef]
  7. S. Rausch, T. Binhammer, A. Harth, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16, 17410–17419 (2008). [CrossRef] [PubMed]
  8. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005). [CrossRef] [PubMed]
  9. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008). [CrossRef] [PubMed]
  10. G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010). [CrossRef]
  11. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996). [CrossRef]
  12. N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 15, 1231–1233 (1995).
  13. J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002). [CrossRef]
  14. Y. K. Chembo, A. Hmima, P. Lacourt, L. Larger, and J. M. Dudley, “Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression,” J. Lightwave Technol. 27, 5160–5167 (2009). [CrossRef]
  15. J. Lasri, P. Devgan, R. Tang, and P. Kumar, “Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses,” Opt. Express 11, 1430–1435 (2003). [CrossRef] [PubMed]
  16. A. F. Kardo-Sysoev, “New power semiconuctor Devices for generation of nano- and subnanosecond pulses,” in Ultra-wideband radar technology, J. D. Taylor Ed. (CRC, 2001), ch. 9.
  17. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010). [CrossRef]
  18. C. C. Cutler, “The regenerative pulse generator,” Proc. IRE, 43, 140–148 (1955). [CrossRef]
  19. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  20. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007). [CrossRef]
  21. J. Li, Y. Liang, and K. Kin-Yip Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009). [CrossRef]
  22. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010). [CrossRef]
  23. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993). [CrossRef]
  24. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron. 40, 1458–1470 (2004). [CrossRef]
  25. V. S. Grigoryan, C. R. Menyuk, and R.-M. Mu “Calculation of timing and amplitude jitter in dispersion-managed optical fiber communications using linearization,” J. Lightwave Technol. 17, 1347–1356 (1999). [CrossRef]
  26. M. I. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1981), pp. 553–560.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited