OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17729–17737

Time-cost analysis of a quantum key distribution system clocked at 100 MHz

X. F. Mo, I. Lucio-Martinez, P. Chan, C. Healey, S. Hosier, and W. Tittel  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17729-17737 (2011)
http://dx.doi.org/10.1364/OE.19.017729


View Full Text Article

Enhanced HTML    Acrobat PDF (846 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the realization of a quantum key distribution (QKD) system clocked at 100 MHz. The system includes classical postprocessing implemented via software, and is operated over a 12 km standard telecommunication dark fiber in a real-world environment. A time-cost analysis of the sifted, error-corrected, and secret key rates relative to the raw key rate is presented, and the scalability of our implementation with respect to higher secret key rates is discussed.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

History
Original Manuscript: May 19, 2011
Revised Manuscript: June 23, 2011
Manuscript Accepted: June 23, 2011
Published: August 25, 2011

Citation
X. F. Mo, I. Lucio-Martinez, P. Chan, C. Healey, S. Hosier, and W. Tittel, "Time-cost analysis of a quantum key distribution system clocked at 100 MHz," Opt. Express 19, 17729-17737 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17729


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing , Bangalore, India, pp. 175–179 (1984).
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duek, N. Ltkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009). [CrossRef]
  4. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystems,” Quantum Inf. Comput. 7, 73–82 (2007).
  5. A. Lamas-Linares and C. Kurtsiefer, “Breaking a quantum key distribution system through a timing side channel,” Opt. Express 15, 9388 (2007). [CrossRef] [PubMed]
  6. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010). [CrossRef]
  7. N. Jain, C. Wittman, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” arXiv : 1103.2327v2, (2011).
  8. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express 13, 3015–3020 (2005). [CrossRef] [PubMed]
  9. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92, 201104 (2008).
  10. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Continuous operation of high bit rate quantum key distribution,” Appl. Phys. Lett. 96, 161102 (2010). [CrossRef]
  11. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legre, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD network,” arXiv :1103.3566 (2010).
  12. M. Peev, C. Pacher, R. Allaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Frst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hbel, G. Humer, T. Lnger, M. Legr, R. Lieger, J. Lodewyck, T. Lornser, N. Ltkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” N. J. Phys. 11, 075001 (2009). [CrossRef]
  13. G. Brassard and L. Salvail, “Lecture notes in computer science,” in Advances in Cryptology EUROCRYPT ’93 (Springer, 1994), vol. 765, pp. 410–23. [CrossRef]
  14. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325 (2004).
  15. W. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  16. X. Wang, “Beating the photon-number-splitting attack in practical quantum cryptography,” Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  17. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005). [CrossRef]
  18. M. Dǔsek, O. Haderka, and M. Hendrych, “Generalized beam-splitting attack in quantum cryptography with dim coherent states,” Opt. Commun. 169, 103–108 (1999). [CrossRef]
  19. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000). [CrossRef] [PubMed]
  20. I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel, “Proof-of-concept of real world quantum key distribution with quantum frames,” N. J. Phys. 11, 095001 (2009). [CrossRef]
  21. In the current setup, the number of sifted key bits to be processed in one execution of error correction is fixed to 10 kb. The time required to collect this data is setup dependent.
  22. C. Healey, I. Lucio-Martinez, M. R. E. Lamont, X. F. Mo, and W. Tittel, “Characterization of an InGaAs/InP single-photon detector at 200 MHz gate rate,” in preparation.
  23. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near-infrared,” Appl. Phys. Lett. 91, 041114 (2007). [CrossRef]
  24. A. R. Dixon, J. F. Dynes, Z. L. Yuan, A. W. Sharpe, A. J. Bennet, and A. J. Shields, “Ultrashort dead time of photon-counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 94, 231113 (2009). [CrossRef]
  25. D. J. Rogers, J. C. Bienfang, A. Nakassis, H. Xu, and C. W. Clark, “Detector dead-time effects and paralyzability in high-speed quantum key distribution,” N. J. Phys. 9, 319 (2007). [CrossRef]
  26. R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory 8(1), 21–28 (1962). [CrossRef]
  27. D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. 33(6), 457–458 (1997). [CrossRef]
  28. D. Pearson, “High-speed QKD reconciliation using forward error correction,” Quantum Commun. Meas. Comput. 734(1), 299–302 (2004).
  29. R. C. Agarwal and C. S. Burrus, “Number theoretic transforms to implement fast digital convolution,” Proc. IEEE 63(4), 550–560 (1975). [CrossRef]
  30. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distribution,” Phys. Rev. A 61, 052304 (2000). [CrossRef]
  31. P. Rice and J. Harrington, “Numerical analysis of decoy state quantum key distribution protocols,” arxiv :0901.0013 (2009).
  32. R. Y. Q. Cai and V. Scarani, “Finite-key analysis for practical implementations of quantum key distribution,” N. J. Phys. 11, 045024 (2009). [CrossRef]
  33. C.-H. F. Fung, X. Ma, and H.-F. Chau, “Practical issues in quantum-key-distribution processing,” Phys. Rev. A 81(1), 012318 (2010). [CrossRef]
  34. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway, “UMAC: fast and secure message authentication,” Advances in Cryptology CRYPTO 99 , Lecture Notes in Computer Science, 1666, 79 (1999).
  35. Y. Bo, R. Karri, and D. A. McGrew, “A high-speed hardware architecture for universal message authentication code,” IEEE J. Sel. Areas Commun. 24(10), 1831–1839 (2006). [CrossRef]
  36. B. Levine, R. Reed Taylor, and H. Schmit, “Implementation of near Shannon limit error-correcting codes using reconfigurable hardware,” IEEE Symposium on Field-Programmable Custom Computing Machines , 217–226 (2000).
  37. M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer, and H. Weinfurter, “High speed optical quantum random number generator,” Opt. Express 18(12), 13029–13037 (2010). [CrossRef] [PubMed]
  38. Two bits are required to determine each polarization state, and four bits allow a random choice of vacuum, decoy and signal states with the desired distribution. Furthermore, some randomness is required for privacy amplification. Note that no random numbers are required at the receiver end due to the passive basis choice.
  39. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express 17(11), 9053–9061 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited