OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17766–17773

Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss

Stephen A. Dekker, Alexander C. Judge, Ravi Pant, Itandehui Gris-Sánchez, Jonathan C. Knight, C. Martjn de Sterke, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17766-17773 (2011)
http://dx.doi.org/10.1364/OE.19.017766


View Full Text Article

Enhanced HTML    Acrobat PDF (1142 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of efficient, octave spanning soliton self-frequency shift. In order to achieve this we used a photonic crystal fiber with reduced OH absorption and widely spaced zero-dispersion wavelengths. To our knowledge, this is the largest reported frequency span for a tunable, fiber-based source. In addition, we observe the generation of light above 2 μm directly from a Ti:Sapphire laser in the form of Cerenkov emission by the soliton when the red-shift saturates at the edge of the anomalous dispersion region.

© 2011 OSA

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 16, 2011
Revised Manuscript: August 16, 2011
Manuscript Accepted: August 16, 2011
Published: August 25, 2011

Citation
Stephen A. Dekker, Alexander C. Judge, Ravi Pant, Itandehui Gris-Sánchez, Jonathan C. Knight, C. Martjn de Sterke, and Benjamin J. Eggleton, "Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss," Opt. Express 19, 17766-17773 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17766


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Kato, K. Fujiura, and T. Kurihara, “Asynchronous all-optical bit-by-bit self-signal recognition and demultiplexing from overlapped signals achieved by self-frequency shift of raman soliton,” Electron. Lett.40, 381–382 (2004). [CrossRef]
  2. S. Oda and A. Maruta, “All-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation,” Opt. Express14, 7895–7902 (2006). [CrossRef] [PubMed]
  3. J. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron.14, 713–723 (2008). [CrossRef]
  4. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett.35, 3631–3633 (2010). [CrossRef] [PubMed]
  5. T. Konishi, K. Takahashi, H. Matsui, T. Satoh, and K. Itoh, “Five-bit parallel operation of optical quantization and coding for photonic analog-to-digital conversion,” Opt. Express19, 16106–16114 (2011). [CrossRef] [PubMed]
  6. F. Mitschke and L. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett.11, 659–661 (1986). [CrossRef] [PubMed]
  7. J. M. Dudley and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78, 1135–1184 (2006). [CrossRef]
  8. X. Liu, C. Xu, W. Knox, J. Chandalia, B. Eggleton, S. Kosinski, and R. Windeler, “Soliton self-frequency shift in a short tapered air–silica microstructure fiber,” Opt. Lett.26, 358–360 (2001). [CrossRef]
  9. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron.7, 518–524 (2001). [CrossRef]
  10. S. Kobtsev, S. Kukarin, N. Fateev, and S. Smirnov, “Generation of self-frequency-shifted solitons in tapered fibers in the presence of femtosecond pumping,” Laser Phys.14, 748–751 (2004).
  11. N. Ishii, C. Teisset, S. Köhler, E. Serebryannikov, T. Fuji, T. Metzger, F. Krausz, A. Baltuška, and A. Zheltikov, “Widely tunable soliton frequency shifting of few-cycle laser pulses,” Phys. Rev. E74, 36617 (2006). [CrossRef]
  12. J. Takayanagi, T. Sugiura, M. Yoshida, and N. Nishizawa, “1.0–1.7μm wavelength-tunable ultrashort-pulse generation using femtosecond Yb-doped fiber laser and photonic crystal fiber,” IEEE Photon. Technol. Lett.18(21), 2284–2286 (2006). [CrossRef]
  13. J. van Howe, J. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M. Yan, “Demonstration of soliton self-frequency shift below 1300nm in higher-order mode, solid silica-based fiber,” Opt. Lett.32, 340–342 (2007). [CrossRef] [PubMed]
  14. M. Chan, S. Chia, T. Liu, T. Tsai, M. Ho, A. Ivanov, A. Zheltikov, J. Liu, H. Liu, and C. Sun, “1.2–2.2μm tunable raman soliton source based on a Cr: Forsterite-laser and a photonic-crystal fiber,” IEEE Photon. Technol. Lett.20, 900–902 (2008). [CrossRef]
  15. I. Gris-Sánchez, B. Mangan, and J. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express1, 179–184 (2011). [CrossRef]
  16. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontinuum generation in a highly birefringent microstructured fiber,” Appl. Phys. Lett.82, 2197–2199 (2003). [CrossRef]
  17. Y. Yong-Qin, R. Shuang-Chen, D. Chen-Lin, and Y. Jian-Quan, “Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser,” Chin. Phys. Lett.22, 384–387 (2005). [CrossRef]
  18. J. Travers, R. Kennedy, S. Popov, J. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett.30, 1938–1940 (2005). [CrossRef] [PubMed]
  19. A. Mussot and A. Kudlinski, “19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 μm,” Electron. Lett.45, 29–30 (2009). [CrossRef]
  20. A. Kiryanov, V. Minkovich, I. Mel’nikov, and A. Sotsky, “Infrared supercontinuum generation in cladding of a hollow-core fiber pumped with a 1 ns 1.06 μm Nd3+: YAG/Cr4+: YAG microchip laser,” Open Opt. J.4, 29–36 (2010).
  21. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber,” Opt. Lett.34, 2015–2017 (2009). [CrossRef] [PubMed]
  22. S. A. Dekker, R. Pant, A. C. Judge, C. M. de Sterke, B. J. Eggleton, I. Gris-Sánchez, and J. C. Knight, “Highly-efficient, octave spanning soliton self-frequency shift using a photonic crystal fiber with low OH loss,” in “Frontiers in Optics,” (Optical Society of America, 2010), PDPB6.
  23. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51, 2602–2607 (1995). [CrossRef] [PubMed]
  24. D. Skryabin, F. Luan, J. Knight, and P. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science301, 1705–1708 (2003). [CrossRef] [PubMed]
  25. J. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett.11, 662–664 (1986). [CrossRef] [PubMed]
  26. R. Pant, A. C. Judge, E. C. Mägi, B. T. Kuhlmey, M. de Sterke, and B. J. Eggleton, “Characterization and optimization of photonic crystal fibers for enhanced soliton self-frequency shift,” J. Opt. Soc. Am. B27, 1894–1901 (2010). [CrossRef]
  27. A. Monteville, D. Landais, O. L. Goffic, D. Tregoat, N. J. Traynor, T.-N. Nguyen, S. Lobo, T. Chartier, and J.-C. Simon, “Low loss, low OH, highly non-linear holey fiber for Raman amplification,” in “Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies,” (Optical Society of America, 2006), CMC1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited