OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17780–17789

Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals

Masaaki Sakakura, Takaya Tochio, Masaaki Eida, Yasuhiko Shimotsuma, Shingo Kanehira, Masayuki Nishi, Kiyotaka Miura, and Kazuyuki Hirao  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17780-17789 (2011)
http://dx.doi.org/10.1364/OE.19.017780


View Full Text Article

Enhanced HTML    Acrobat PDF (2839 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The structural changes inside rock-salt crystals after femtosecond (fs) laser irradiation are investigated using a microscopic pump-probe technique and an elastic simulation. The pump-probe imaging shows that a squircle-shaped stress wave is generated after the fs laser irradiation as a result of the relaxation of thermal stress in the photoexcited region. Pump-probe crossed-Nicols imaging and elastic simulation elucidate that shear stresses and tensile stresses are concentrated in specific regions during the propagation of the stress wave. The shear stresses and tensile stresses observed in this study can explain the characteristic laser-induced structural changes inside rock-salt crystals.

© 2011 OSA

OCIS Codes
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3390) Other areas of optics : Laser materials processing
(100.0118) Image processing : Imaging ultrafast phenomena

ToC Category:
Ultrafast Optics

History
Original Manuscript: July 5, 2011
Revised Manuscript: August 8, 2011
Manuscript Accepted: August 8, 2011
Published: August 25, 2011

Citation
Masaaki Sakakura, Takaya Tochio, Masaaki Eida, Yasuhiko Shimotsuma, Shingo Kanehira, Masayuki Nishi, Kiyotaka Miura, and Kazuyuki Hirao, "Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals," Opt. Express 19, 17780-17789 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-18-17780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Komanduri, N. Chandrasekaran, and L. M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear242(1-2), 60–88 (2000). [CrossRef]
  2. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics (John Wiley & Sons, Inc. 1976), Chaps. 4 and 14.
  3. J. P. Hirth and J. Lothe, Theory of dislocation (John Wiley & Sons, 1982).
  4. J. L. Robins, T. N. Rhodin, and R. L. Gerlach, “Dislocation structures in cleaved magnesium oxide,” J. Appl. Phys.37(10), 3893–3903 (1966). [CrossRef]
  5. G. Taylor, “The mechanism of plastic deformation of crystals. Part I. Theoretical,” Proc. Roy. Soc. A145(855), 362–387 (1934). [CrossRef]
  6. J. S. Koehler, “On the dislocation theory of plastic deformation,” Phys. Rev.60(5), 397–410 (1941). [CrossRef]
  7. B. Lawn, Fracture of Brittle Solids, (Cambridge University Press, Cambridge, 1993).
  8. G. J. Weng; “Dislocation Theories of Work Hardening and Yield Surfaces of Single Crystals,” Acta Mech.37(3-4), 217–230 (1980). [CrossRef]
  9. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett.96(16), 166101 (2006). [CrossRef] [PubMed]
  10. Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett.7(5-6), 224–228 (1988). [CrossRef]
  11. S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett.90(16), 163110 (2007). [CrossRef]
  12. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).
  13. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev.103(2), 487–518 (2003). [CrossRef] [PubMed]
  14. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005). [CrossRef]
  15. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B71(2), 024113 (2005). [CrossRef]
  16. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett.94(4), 041911 (2009). [CrossRef]
  17. L. D. Landau and E. M. Lifshitz, Theory of elasticity (Pergamon, Oxford, 1986).
  18. E. H. Bogardus, “Third-order elastic constants of Ge, MgO, and fused SiO2,” J. Appl. Phys.36(8), 2504–2513 (1965). [CrossRef]
  19. R. Ruppin, “Thermal expansion of MgO from a lattice dynamical shell model,” Solid State Commun.9(16), 1387–1389 (1971). [CrossRef]
  20. Data sheet of a LiF crystal: http://www.oken.co.jp/o/jpn_g/tokusei.html
  21. C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev.106(6), 1175–1177 (1957). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPG (810 KB)      QuickTime
» Media 2: MPG (838 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited