OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 18 — Aug. 29, 2011
  • pp: 17852–17863

Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers

Pierre Suret, Antonio Picozzi, and Stéphane Randoux  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17852-17863 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a statistically stationary state. The evolution of the power spectrum of the field is characterized by the rapid growth of spectral tails that exhibit damped oscillations, until the whole spectrum ultimately reaches a steady state. The kinetic approach allows us to derive an analytical expression of the damped oscillations, which is found in agreement with the numerical simulations of both the NLS and kinetic equations. We report the experimental observation of this peculiar relaxation process of the integrable NLS equation.

© 2011 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: April 26, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: July 24, 2011
Published: August 26, 2011

Pierre Suret, Antonio Picozzi, and Stéphane Randoux, "Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers," Opt. Express 19, 17852-17863 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  2. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Society for Industrial and Applied Mathematics, 1981). [CrossRef]
  3. W. Zhao and E. Bourkoff, “Interactions between dark solitons,” Opt. Lett. 14, 1371–1373 (1989). [CrossRef] [PubMed]
  4. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo, “Observation of a gradient catastrophe generating solitons,” Phys. Rev. Lett. 102, 083902 (2009). [CrossRef] [PubMed]
  5. A. Fratalocchi, C. Conti, G. Ruocco, and S. Trillo, “Free-energy transition in a gas of noninteracting nonlinear wave particles,” Phys. Rev. Lett. 101, 044101 (2008). [CrossRef] [PubMed]
  6. G. A. El and A. M. Kamchatnov, “Kinetic equation for a dense soliton gas,” Phys. Rev. Lett. 95, 204101 (2005). [CrossRef] [PubMed]
  7. J. T. Manassah, “Self-phase modulation of incoherent light,” Opt. Lett. 15, 329–331 (1990). [CrossRef] [PubMed]
  8. V. E. Zakharov, “Turbulence in integrable systems,” Stud. Appl. Math. 122, 219–234 (2009). [CrossRef]
  9. A. C. Newell, S. Nazarenko, and L. Biven, “Wave turbulence and intermittency,” Physica D 152–153, 520–550 (2001). [CrossRef]
  10. S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov “Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrodinger equation,” Physica D 57, 96–160 (1992). [CrossRef]
  11. C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, “Condensation of classical nonlinear waves,” Phys. Rev. Lett. 95, 263901 (2005). [CrossRef]
  12. A. Picozzi, “Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics,” Opt. Express 15, 9063–9083 (2007). [CrossRef] [PubMed]
  13. P. Aschieri, J. Garnier, C. Michel, V. Doya, and A. Picozzi, “Condensation and thermalization of classical optical waves in a waveguide,” Phys. Rev. A 83, 033838 (2011). [CrossRef]
  14. C. Michel, P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Influence of third-order dispersion on the propagation of incoherent light in optical fibers,” Opt. Lett. 35, 2367–2369 (2010). [CrossRef] [PubMed]
  15. P. Suret, S. Randoux, H. R. Jauslin, and A. Picozzi, “Anomalous thermalization of nonlinear wave systems,” Phys. Rev. Lett. 104, 054101 (2010). [CrossRef] [PubMed]
  16. V. E. Zakharov, F. Dias, and A. Pushkarev, “One-dimensional wave turbulence,” Phys. Rep. 398, 1 (2004). [CrossRef]
  17. U. Bortolozzo, J. Laurie, S. Nazarenko, and S. Residori, “Optical wave turbulence and the condensation of light,” J. Opt. Soc. Am. B 26, 2280 (2009). [CrossRef]
  18. B. Barviau, B. Kibler, A. Kudlinski, A. Mussot, G. Millot, and A. Picozzi, “Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber,” Opt. Express 17, 7392 (2009). [CrossRef] [PubMed]
  19. B. Barviau, B. Kibler, and A. Picozzi, “Wave turbulence description of supercontinuum generation: influence of self-steepening and higher-order dispersion,” Phys. Rev. A 79, 063840 (2009). [CrossRef]
  20. M. Tabor, Chaos and Integrability in Nonlinear Dynamics (Wiley, 1989).
  21. B. Barviau, S. Randoux, and P. Suret, “Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber,” Opt. Lett. 31, 1696–1698 (2006). [CrossRef] [PubMed]
  22. B. M. Herbst and M. J. Ablowitz, “Numerically induced chaos in the nonlinear Schrodinger equation,” Phys. Rev. Lett. 62, 2065–2068 (1989). [CrossRef] [PubMed]
  23. D. B. S. Soh, J. P. Koplow, S. W. Moore, K. L. Schroder, and W. L. Hsu “The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers,” Opt. Express 18, 22393–22405 (2010). [CrossRef] [PubMed]
  24. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited