OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 17908–17924

Towards a field-compatible optical Spectroscopic device for cervical cancer screening in resource-limited settings: effects of calibration and pressure

Vivide Tuan-Chyan Chang, Delson Merisier, Bing Yu, David K. Walmer, and Nirmala Ramanujam  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 17908-17924 (2011)
http://dx.doi.org/10.1364/OE.19.017908


View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quantitative optical spectroscopy has the potential to provide an effective low cost, and portable solution for cervical pre-cancer screening in resource-limited communities. However, clinical studies to validate the use of this technology in resource-limited settings require low power consumption and good quality control that is minimally influenced by the operator or variable environmental conditions in the field. The goal of this study was to evaluate the effects of two sources of potential error: calibration and pressure on the extraction of absorption and scattering properties of normal cervical tissues in a resource-limited setting in Leogane, Haiti. Our results show that self-calibrated measurements improved scattering measurements through real-time correction of system drift, in addition to minimizing the time required for post-calibration. Variations in pressure (tested without the potential confounding effects of calibration error) caused local changes in vasculature and scatterer density that significantly impacted the tissue absorption and scattering properties Future spectroscopic systems intended for clinical use, particularly where operator training is not viable and environmental conditions unpredictable, should incorporate a real-time self-calibration channel and collect diffuse reflectance spectra at a consistent pressure to maximize data integrity.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(170.4440) Medical optics and biotechnology : ObGyn
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 16, 2011
Revised Manuscript: May 30, 2011
Manuscript Accepted: June 9, 2011
Published: August 29, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Vivide Tuan-Chyan Chang, Delson Merisier, Bing Yu, David K. Walmer, and Nirmala Ramanujam, "Towards a field-compatible optical Spectroscopic device for cervical cancer screening in resource-limited settings: effects of calibration and pressure," Opt. Express 19, 17908-17924 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-17908


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. PATH, “Cervical cancer prevention initiatives at PATH,” (PATH), http://www.rho.org/files/PATH_cxca_rep_to_world.pdf , Accessed July 1, 2010.
  2. J. Ferlay, F. Bray, P. Pisani, and D. M. Parkin, GLOBOCAN 2002: Cancer Incidence, Mortality and Prevalence Worldwide (IARCPress, Lyon, 2004).
  3. A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer86(3), 429–435 (2000). [CrossRef] [PubMed]
  4. R. Sankaranarayanan and J. Ferlay, “Worldwide burden of gynaecological cancer: the size of the problem,” Best Pract. Res. Clin. Obstet. Gynaecol.20(2), 207–225 (2006). [CrossRef] [PubMed]
  5. R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer110(6), 907–913 (2004). [CrossRef] [PubMed]
  6. S. Arrossi, R. Sankaranarayanan, and D. M. Parkin, “Incidence and mortality of cervical cancer in Latin America,” Salud Publica Mex.45(Suppl 3), S306–S314 (2003). [CrossRef] [PubMed]
  7. M. E. Soler, L. Gaffikin, and P. D. Blumenthal, “Cervical cancer screening in developing countries,” Prim. Care Update Ob Gyns7(3), 118–123 (2000). [CrossRef] [PubMed]
  8. S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med.353(20), 2158–2168 (2005). [CrossRef] [PubMed]
  9. T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol.197(4), 340–345 (2007). [CrossRef] [PubMed]
  10. R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med.360(14), 1385–1394 (2009). [CrossRef] [PubMed]
  11. L. C. Zeferino and S. F. Derchain, “Cervical cancer in the developing world,” Best Pract. Res. Clin. Obstet. Gynaecol.20(3), 339–354 (2006). [CrossRef] [PubMed]
  12. L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer89(4), 826–833 (2000). [CrossRef] [PubMed]
  13. N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer8(9), 725–731 (2008). [CrossRef] [PubMed]
  14. M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol.91(4), 626–631 (1998). [CrossRef] [PubMed]
  15. A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol.67(1), 27–33 (1997). [CrossRef] [PubMed]
  16. J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol.24(2), 103–113 (2002). [PubMed]
  17. S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract.201(4), 313–318 (2005). [CrossRef] [PubMed]
  18. T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt.12(2), 024021–024027 (2007). [CrossRef] [PubMed]
  19. R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol.182(5), 1135–1139 (2000). [CrossRef] [PubMed]
  20. J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt.48(10), D26–D35 (2009). [CrossRef] [PubMed]
  21. D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J.92(9), 3260–3274 (2007). [CrossRef] [PubMed]
  22. O. Abulafia and D. M. Sherer, “Angiogenesis in the uterine cervix,” Int. J. Gynecol. Cancer10(5), 349–357 (2000). [CrossRef] [PubMed]
  23. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt.44(11), 2072–2081 (2005). [CrossRef] [PubMed]
  24. O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol.84(2), 222–227 (2002). [CrossRef] [PubMed]
  25. A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol.72(3), 306–311 (1999). [CrossRef] [PubMed]
  26. R. D. Alvarez, T. C. Wright, and Optical Detection Group, “Effective cervical neoplasia detection with a novel optical detection system: a randomized trial,” Gynecol. Oncol.104(2), 281–289 (2007). [CrossRef] [PubMed]
  27. C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron.14(1), 29–42 (2008). [CrossRef]
  28. T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis.11(1), 18–24 (2007). [CrossRef] [PubMed]
  29. J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007). [CrossRef] [PubMed]
  30. D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol.107(1Suppl 1), S94–S97 (2007). [CrossRef] [PubMed]
  31. V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt.15(5), 057006–057009 (2010). [CrossRef] [PubMed]
  32. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006). [CrossRef] [PubMed]
  33. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009). [CrossRef] [PubMed]
  34. V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia11(4), 325–332 (2009). [PubMed]
  35. I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol.186(3), 374–382 (2002). [CrossRef] [PubMed]
  36. J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol.105(2), 439–445 (2007). [CrossRef] [PubMed]
  37. R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod.14(11), 2908–2916 (1999). [CrossRef] [PubMed]
  38. I. Georgakoudi, E. E. Sheets, C. P. Crum, M. G. Mueller, V. Backman, and M. S. Feld, “Trimodal spectroscopy as a tool for detecting cervical squamous intraepithelial lesions in vivo,” in Diagnostic Optical Spectroscopy in Biomedicine(SPIE, Munich, Germany, 2001), pp. 1–9.
  39. K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc.65(2), 206–215 (2011). [CrossRef]
  40. B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett.33(16), 1783–1785 (2008). [CrossRef] [PubMed]
  41. B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt.16(1), 011010 (2011). [CrossRef] [PubMed]
  42. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  43. D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003). [CrossRef] [PubMed]
  44. J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol.11(4), 258–261 (2007). [CrossRef] [PubMed]
  45. K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia11(9), 899–900 (2009).
  46. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt.14(5), 054051 (2009). [CrossRef] [PubMed]
  47. M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express15(12), 7863–7875 (2007). [CrossRef] [PubMed]
  48. T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010). [CrossRef] [PubMed]
  49. J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res.69(7), 2919–2926 (2009). [CrossRef] [PubMed]
  50. S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res.12(6), R91 (2010). [CrossRef] [PubMed]
  51. S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water.”
  52. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004). [CrossRef] [PubMed]
  53. V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE7891, 78910A (2011). [CrossRef]
  54. S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express1(2), 489–499 (2010). [CrossRef] [PubMed]
  55. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13(1), 010502–010503 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited