OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18029–18035

Fabrication of low loss and high speed silicon optical modulator using doping compensation method

Xiaoguang Tu, Tsung-Yang Liow, Junfeng Song, Mingbin Yu, and Guo Qiang Lo  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18029-18035 (2011)
http://dx.doi.org/10.1364/OE.19.018029


View Full Text Article

Enhanced HTML    Acrobat PDF (2046 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Compared with an optical modulator based on lithium niobate, the total loss of the current high speed silicon modulator is still too high for commercial use. Reduction of the total loss always comes along with the degradation of the other two characteristics including modulation efficiency or switching speed. In this paper, we reduce the phase shifter loss through optimizing the doping level out of the depletion region while keeping the modulation efficiency and switching speed at a high level. Compensated doping method is utilized to optimize the doping level on the cross section of the phase shift. With doping compensation, the Loss·Efficiency figure-of-merit (FOM) of 4 mm phase shifter is reduced from 25.8 dB·V to 19.4 dB·V while still keeping the small signal 3 dB-bandwidth at about 10 GHz. After doping profile optimizing, the measured bandwidth of the phase shifter with doping compensation can even reaches 17 GHz with a Loss·Efficiency FOM of about 25.4 dB·V.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Integrated Optics

History
Original Manuscript: June 7, 2011
Revised Manuscript: August 4, 2011
Manuscript Accepted: August 16, 2011
Published: August 30, 2011

Citation
Xiaoguang Tu, Tsung-Yang Liow, Junfeng Song, Mingbin Yu, and Guo Qiang Lo, "Fabrication of low loss and high speed silicon optical modulator using doping compensation method," Opt. Express 19, 18029-18035 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Kimerling, D. Ahn, A. B. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. M. Gill, M. Grove, C.-Y. Hong, M. Lipson, J. Liu, J. Michel, D. Pan, S. S. Patel, A. T. Pomerene, M. Rasras, D. K. Sparacin, K.-Y. Tu, A. E. White, C. W. Wong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502, 612502-10 (2006). [CrossRef]
  2. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010). [CrossRef]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010). [CrossRef]
  4. J. Michel, J. F. Liu, L. C. Kimerling, “High performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010). [CrossRef]
  5. R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  6. S. R. Giguere, L. Friedman, R. A. Soref, J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide decices,” J. Appl. Phys. 68(10), 4964–4970 (1990). [CrossRef]
  7. J. Basak, L. Liao, A. Liu, D. Rubin, Y. Chetrit, H. Nguyen, D. Samara-Rubio, R. Cohen, N. Izhaky, M. Paniccia, “Developments in gigascale silicon optical modulators using free carrier dispersion mechanisms,” Adv. Opt. Technol. 2008, 678948 (2008). [CrossRef]
  8. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010). [CrossRef]
  9. N. N. Feng, S. R. Liao, D. Z. Feng, P. Dong, D. W. Zheng, H. Liang, R. Shafiiha, G. L. Li, J. E. Cunningham, A. V. Krishnamoorthy, M. Asghari, “High speed carrier-depletion modulators with 1.4V-cm VπL integrated on 0.25µm silicon-on-insulator waveguides,” Opt. Express 18(8), 7994–7999 (2010). [CrossRef] [PubMed]
  10. D. Marris-Morini, L. Vivien, J. M. Fédéli, E. Cassan, P. Lyan, S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16(1), 334–339 (2008). [CrossRef] [PubMed]
  11. G. Rasigade, D. Marris-Morini, L. Vivien, E. Cassan, “Performance evolutions of carrier depletion silicon optical modulators: From p-n to p-i-p-i-n diodes,” IEEE J. Quantum Electron. 16(1), 179–184 (2010). [CrossRef]
  12. U. Littmark, J. F. Ziegler, “Ranges of energetic ions in matter,” Phys. Rev. A 23(1), 64–72 (1981). [CrossRef]
  13. Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010). [CrossRef] [PubMed]
  14. X. Tu, S. Chen, L. Zhao, F. Sun, J. Yu, Q. Wang, “A high performance Si based MOS electrooptic phase modulator with a shunt capacitor configuration,” J. Lightwave Technol. 24(2), 1000–1007 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited