OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18072–18079

Ultra-high extinction ratio micropolarizers using plasmonic lenses

J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18072-18079 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The design of a new type of plasmonic ultra-high extinction ratio micropolarizing transmission filter is presented along with an experimental demonstration. A pair of dielectric coated metal gratings couple incident TM polarized light into surface plasmons, which are fed into a central metal-insulator-metal (MIM) waveguide, followed by transmission through a sub-wavelength aperture. Extinction ratios exceeding 1011 are predicted by finite element simulation. Good absolute agreement for both the spectral and polarization response is obtained between measurement and simulations using measured geometric parameters. The filters can be easily fabricated and sized to match the pixel pitch of current focal plane arrays.

© 2011 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(240.6680) Optics at surfaces : Surface plasmons
(110.5405) Imaging systems : Polarimetric imaging
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: July 11, 2011
Revised Manuscript: August 12, 2011
Manuscript Accepted: August 22, 2011
Published: August 30, 2011

J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, "Ultra-high extinction ratio micropolarizers using plasmonic lenses," Opt. Express 19, 18072-18079 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006). [CrossRef] [PubMed]
  2. M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010). [CrossRef] [PubMed]
  3. L. B. Wolff, “Applications of polarization camera technology,” IEEE Intell. Syst. 10(5), 30–38 (1995).
  4. L. B. Wolff, “Surface orientation from polarization images,” Proc. SPIE 850, 110–121 (1995).
  5. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995). [CrossRef]
  6. X. J. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011). [CrossRef] [PubMed]
  7. G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. B 50(9), 886–891 (1960). [CrossRef]
  8. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999). [CrossRef]
  9. J. Guo and D. J. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39(10), 1486–1492 (2000). [CrossRef] [PubMed]
  10. J. Zhang, Y. Yan, X. Cao, and L. Zhang, “Microarrays of silver nanowires embedded in anodic alumina membrane templates: size dependence of polarization characteristics,” Appl. Opt. 45(2), 297–304 (2006). [CrossRef] [PubMed]
  11. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010). [CrossRef] [PubMed]
  12. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009). [CrossRef] [PubMed]
  13. Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33(15), 1653–1655 (2008). [CrossRef] [PubMed]
  14. M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009). [CrossRef]
  15. Y. Zhou and D. J. Klotzkin, “Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 microm,” Appl. Opt. 47(20), 3555–3560 (2008). [CrossRef] [PubMed]
  16. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010). [CrossRef] [PubMed]
  17. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15(13), 7984–7993 (2007). [CrossRef] [PubMed]
  18. Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010). [CrossRef]
  19. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 2002).
  20. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  21. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006). [CrossRef] [PubMed]
  22. A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010). [CrossRef] [PubMed]
  23. D. A. LeMaster, “Stokes image reconstruction for two-color microgrid polarization imaging systems,” Opt. Express 19(15), 14604–14616 (2011). [CrossRef] [PubMed]
  24. A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007). [CrossRef]
  25. H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited