OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18135–18148

Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach

Guozhong Liu, Siavash Yousefi, Zhongwei Zhi, and Ruikang K. Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18135-18148 (2011)
http://dx.doi.org/10.1364/OE.19.018135


View Full Text Article

Enhanced HTML    Acrobat PDF (2249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes an automatic point spread function (PSF) estimation method to de-blur out-of-focus optical coherence tomography (OCT) images. The method utilizes Richardson-Lucy deconvolution algorithm to deconvolve noisy defocused images with a family of Gaussian PSFs with different beam spot sizes. Then, the best beam spot size is automatically estimated based on the discontinuity of information entropy of recovered images. Therefore, it is not required a prior knowledge of the parameters or PSF of OCT system for de-convoluting image. The model does not account for the diffraction and the coherent scattering of light by the sample. A series of experiments are performed on digital phantoms, a custom-built phantom doped with microspheres, fresh onion as well as the human fingertip in vivo to show the performance of the proposed method. The method may also be useful in combining with other deconvolution algorithms for PSF estimation and image recovery.

© 2011 OSA

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(110.3000) Imaging systems : Image quality assessment
(110.4850) Imaging systems : Optical transfer functions
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Processing

History
Original Manuscript: July 8, 2011
Revised Manuscript: August 14, 2011
Manuscript Accepted: August 17, 2011
Published: August 31, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Guozhong Liu, Siavash Yousefi, Zhongwei Zhi, and Ruikang K. Wang, "Automatic estimation of point-spread-function for deconvoluting out-of-focus optical coherence tomographic images using information entropy-based approach," Opt. Express 19, 18135-18148 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Z. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. P. H. Tomolins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005). [CrossRef]
  3. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus of OCT with depth-independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).
  4. B. Qi, A. O. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a micro-electromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004). [CrossRef]
  5. A. Divetia, T.-H. Hsieh, J. Zhang, Z. Chen, M. Bachman, and G.-P. Li, “Dynamically focused optical coherence tomography for endoscopic applications,” Appl. Phys. Lett.86(10), 103902 (2005). [CrossRef]
  6. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express14(8), 3238–3246 (2006). [CrossRef] [PubMed]
  7. Z. H. Ding, H. W. Ren, Y. H. Zhao, J. S. Nelson, and Z. P. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett.27(4), 243–245 (2002). [CrossRef] [PubMed]
  8. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, Proc. of SPIE Vol. 7168, 71681N (2009).
  9. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys.3(2), 129–134 (2007). [CrossRef]
  10. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express15(12), 7634–7641 (2007). [CrossRef] [PubMed]
  11. Y. Yasuno, J. I. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express14(3), 1006–1020 (2006). [CrossRef] [PubMed]
  12. M. D. Kulkarni, C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett.33(16), 1365–1367 (1997). [CrossRef]
  13. R. K. Wang, “Resolution improved optical coherence-gating tomography for imaging biological tissue,” J. Mod. Opt.46, 1905–1913 (1999).
  14. T. S. Ralston, D. L. Marks, F. Kamalabadi, and S. A. Boppart, “Deconvolution Methods for Mitigation of Transverse Blurring in Optical Coherence Tomography,” IEEE Trans. Image Process.14(9), 1254–1264 (2005). [CrossRef] [PubMed]
  15. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A26(1), 72–77 (2009). [CrossRef] [PubMed]
  16. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the CLEAN algorithm,” J. Biomed. Opt.3(1), 66–75 (1998). [CrossRef]
  17. J. P. Rolland, P. Meemon, S. Murali, K. P. Thompson, and K. S. Lee, “Gabor-based fusion technique for Optical Coherence Microscopy,” Opt. Express18(4), 3632–3642 (2010). [CrossRef] [PubMed]
  18. P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008). [CrossRef]
  19. P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” NPL Report OP 2 (National Physical Laboratory, pp: 1754–2944, (2009).
  20. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010). [CrossRef] [PubMed]
  21. P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011). [CrossRef] [PubMed]
  22. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010). [CrossRef] [PubMed]
  23. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006). [CrossRef] [PubMed]
  24. Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express2(5), 1059–1068 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited