OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18182–18189

Towards total photonic control of complex-shaped colloids by vortex beams

Clayton P. Lapointe, Thomas G. Mason, and Ivan I. Smalyukh  »View Author Affiliations

Optics Express, Vol. 19, Issue 19, pp. 18182-18189 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical trapping and orientational control over colloidal particles having complex shapes in an anisotropic host fluid using a dynamic holographic optical tweezers system. Interactions between a colloidal particle and the toroidal intensity distributions of focused Laguerre-Gaussian beams allow for stable optical tweezing and provide a tunable tilt of the particle out of the focal plane. Use of an aligned nematic liquid crystal as the host fluid suppresses rotations about the optical axis arising from angular momentum transfer from the beam and effectively defines a rotational axis for the colloid within the trap.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.3710) Materials : Liquid crystals
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: May 23, 2011
Revised Manuscript: July 14, 2011
Manuscript Accepted: August 10, 2011
Published: September 1, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Clayton P. Lapointe, Thomas G. Mason, and Ivan I. Smalyukh, "Towards total photonic control of complex-shaped colloids by vortex beams," Opt. Express 19, 18182-18189 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990). [CrossRef] [PubMed]
  3. J. C. Crocker and D. G. Grier, “Microscopic measurement of the pair interaction potential of charge-stabilized colloid,” Phys. Rev. Lett. 73(2), 352–355 (1994). [CrossRef] [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  5. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998). [CrossRef]
  6. Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89(10), 108303 (2002). [CrossRef] [PubMed]
  7. J. N. Wilking and T. G. Mason, “Multiple trapped states and angular Kramers hopping of complex dielectric shapes in a simple optical trap,” Europhys. Lett. 81(5), 58005 (2008). [CrossRef]
  8. T. Asavei, V. L. Y. Loke, M. Barbieri, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical angular momentum transfer to microrotors fabricated by two-photon photopolymerization,” N. J. Phys. 11(9), 093021 (2009). [CrossRef]
  9. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003). [CrossRef] [PubMed]
  10. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005). [CrossRef] [PubMed]
  11. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003). [CrossRef] [PubMed]
  12. J. E. Curtis and D. G. Grier, “Modulated optical vortices,” Opt. Lett. 28(11), 872–874 (2003). [CrossRef] [PubMed]
  13. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003). [CrossRef]
  14. M. Yada, J. Yamamoto, and H. Yokoyama, “Direct observation of anisotropic interparticle forces in nematic colloids with optical tweezers,” Phys. Rev. Lett. 92(18), 185501 (2004). [CrossRef] [PubMed]
  15. I. I. Smalyukh, O. D. Lavrentovich, A. N. Kuzmin, A. V. Kachynski, and P. N. Prasad, “Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal,” Phys. Rev. Lett. 95(15), 157801 (2005). [CrossRef] [PubMed]
  16. R. P. Trivedi, D. Engström, and I. I. Smalyukh, “Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids,” J. Opt. 13(4), 044001 (2011). [CrossRef]
  17. D. Engström, R. P. Trivedi, M. Persson, M. Goksör, K. A. Bertness, and I. I. Smalyukh, “Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls,” Soft Matter 7(13), 6304–6312 (2011). [CrossRef]
  18. C. P. Lapointe, T. G. Mason, and I. I. Smalyukh, “Shape-controlled colloidal interactions in nematic liquid crystals,” Science 326(5956), 1083–1086 (2009). [CrossRef] [PubMed]
  19. F. Mondiot, S. P. Chandran, O. Mondain-Monval, and J.-C. Loudet, “Shape-induced dispersion of colloids in anisotropic fluids,” Phys. Rev. Lett. 103(23), 238303 (2009). [CrossRef] [PubMed]
  20. F. R. Hung, O. Guzmán, B. T. Gettelfinger, N. L. Abbott, and J. J. de Pablo, “Anisotropic nanoparticles immersed in a nematic liquid crystal: defect structures and potentials of mean force,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(1), 011711 (2006). [CrossRef] [PubMed]
  21. M. Škarabot, M. Ravnik, D. Babic, N. Osterman, I. Poberaj, S. Zumer, I. Musevic, A. Nych, U. Ognysta, and V. Nazarenko, “Laser trapping of low refractive index colloids in a nematic liquid crystal,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021705 (2006). [CrossRef] [PubMed]
  22. I. I. Smalyukh, A. V. Kachynski, A. N. Kuzmin, and P. N. Prasad, “Laser trapping in anisotropic fluids and polarization-controlled particle dynamics,” Proc. Natl. Acad. Sci. U.S.A. 103(48), 18048–18053 (2006). [CrossRef] [PubMed]
  23. H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Transact. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006). [CrossRef] [PubMed]
  24. C. P. Lapointe, S. Hopkins, T. G. Mason, and I. I. Smalyukh, “Electrically driven multiaxis rotational dynamics of colloidal platelets in nematic liquid crystals,” Phys. Rev. Lett. 105(17), 178301 (2010). [CrossRef] [PubMed]
  25. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998). [CrossRef]
  26. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  27. C. J. Hernandez and T. G. Mason, “Colloidal alphabet soup: monodisperse dispersions of shape-designed lithoparticles,” J. Phys. Chem. C 111(12), 4477–4480 (2007). [CrossRef]
  28. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47(19), 1411–1414 (1981). [CrossRef]
  29. M. A. Clifford, J. Arlt, J. Courtial, and K. Dholakia, “High-order Laguerre–Gaussian laser modes for studies of cold atoms,” Opt. Commun. 156(4-6), 300–306 (1998). [CrossRef]
  30. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225(4-6), 215–222 (2003). [CrossRef]
  31. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13(22), 8906–8912 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: MOV (1003 KB)     
» Media 2: MOV (866 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited