OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18283–18293

Nonlinear responses in optical metamaterials: theory and experiment

Shiwei Tang, David J. Cho, Hao Xu, Wei Wu, Y. Ron Shen, and Lei Zhou  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18283-18293 (2011)
http://dx.doi.org/10.1364/OE.19.018283


View Full Text Article

Enhanced HTML    Acrobat PDF (1286 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employed both theoretical calculations and experiments to study the nonlinear responses in optical metamaterials. The spectra of second-harmonic generations measured on a fishnet metamaterial are in quantitative agreements with calculations based on full-wave numerical simulations combined with field integrations, both exhibiting ~80 times enhancements at the magnetic resonance frequency. Our calculations explained several interesting features observed experimentally, and suggested an optimal metamaterial structure to yield the strongest nonlinear signals.

© 2011 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: July 7, 2011
Revised Manuscript: August 22, 2011
Manuscript Accepted: August 25, 2011
Published: September 2, 2011

Citation
Shiwei Tang, David J. Cho, Hao Xu, Wei Wu, Y. Ron Shen, and Lei Zhou, "Nonlinear responses in optical metamaterials: theory and experiment," Opt. Express 19, 18283-18293 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18283


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001). [CrossRef] [PubMed]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  5. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  6. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  7. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature438(7066), 335–338 (2005). [CrossRef] [PubMed]
  8. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett.31(9), 1259–1261 (2006). [CrossRef] [PubMed]
  9. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett.96(10), 107401 (2006). [CrossRef] [PubMed]
  10. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from re〉ection and transmission coef□cients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  11. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B69(24), 241101 (2004). [CrossRef]
  12. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett.95(22), 223902 (2005). [CrossRef] [PubMed]
  13. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006). [CrossRef] [PubMed]
  15. H. Q. Lei Zhou, “Li, Y. Q. Qin, Z. Y. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett.86, 101101 (2005).
  16. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  17. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313(5786), 502–504 (2006). [CrossRef] [PubMed]
  18. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials,” Opt. Express15(8), 5238–5247 (2007). [CrossRef] [PubMed]
  19. M. W. Klein, M. Wegener, N. Feth, and S. Linden, “Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum,” Opt. Express16(11), 8055 (2008). [CrossRef]
  20. E. Kim, F. Wang, W. Wu, Z. Yu, and Y. Shen, “Nonlinear optical spectroscopy of photonic metamaterials,” Phys. Rev. B78(11), 113102 (2008). [CrossRef]
  21. Simulations were performed using the package CONCERTO 7.0, Vector Field Limited, England, (2008).
  22. Handbook of Optical Constants of Solids I, edited by E. D. Palik (Academic, San Diego, 1998).
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  24. J. Rudnick and E. A. Stern, “Second-harmonic radiation from metal surfaces,” Phys. Rev. B4(12), 4274–4290 (1971). [CrossRef]
  25. D. Krause, C. W. Teplin, and C. T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum,” J. Appl. Phys.96(7), 3626 (2004). [CrossRef]
  26. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1973).
  27. This is the simplest way to consider the local field corrections for the SH radiations. Those electric dipoles generated deep inside the structure (say, located at the inner surfaces sandwiched between two silver layers) do not radiate efficiently, and therefore, we do not include their contribution.
  28. BecauseχS,ζξξ(2)=χS,ζηη(2) = 0 from the free electron gas model for Ag, the local field component parallel to the surface cannot induce a non-vanishing pz(2) on the surface. However, a weak local field component perpendicular to the surface is actually present when the S-polarized input impinges on the nanostructure.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited