OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 19 — Sep. 12, 2011
  • pp: 18393–18398

Perfect absorber supported by optical Tamm states in plasmonic waveguide

Yongkang Gong, Xueming Liu, Hua Lu, Leiran Wang, and Guoxi Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 19, pp. 18393-18398 (2011)
http://dx.doi.org/10.1364/OE.19.018393


View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on a two-dimensional plasmonic metal-dielectric-metal (MDM) waveguide with a thin metallic layer and a dielectric photonic crystal in the core, a novel absorber at visual and near-infrared frequencies is presented. The absorber spectra and filed distributions are investigated by the transfer-matrix-method and the finite-difference time-domain method. Numerical results show that attributing to excitation of the optical Tamm states in the MDM waveguide core, the optical wave is trapped in the proposed structure without reflection and transmission, leading to perfect absorption as high as 0.991. The proposed absorber can find useful application in all-optical integrated photonic circuits.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5403) Optoelectronics : Plasmonics
(010.1030) Atmospheric and oceanic optics : Absorption

ToC Category:
Integrated Optics

History
Original Manuscript: June 16, 2011
Revised Manuscript: August 7, 2011
Manuscript Accepted: August 18, 2011
Published: September 6, 2011

Citation
Yongkang Gong, Xueming Liu, Hua Lu, Leiran Wang, and Guoxi Wang, "Perfect absorber supported by optical Tamm states in plasmonic waveguide," Opt. Express 19, 18393-18398 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-19-18393


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. D. Parsons and D. J. Pedder, “Thin-film infrared absorber structures for advanced thermal detectors,” J. Vac. Sci. Technol. A6(3), 1686–1689 (1988). [CrossRef]
  2. S. Longhi, “Pi-symmetric laser absorber,” Phys. Rev. A82(3), 031801 (2010). [CrossRef]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  4. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. Smith, and W. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B79(12), 125104 (2009). [CrossRef]
  5. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B78(24), 241103 (2008). [CrossRef]
  6. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett.95(24), 241111 (2009). [CrossRef]
  7. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  9. Y. K. Gong, Z. Y. Li, J. X. Fu, Y. H. Chen, G. X. Wang, H. Lu, L. Wang, and X. Liu, “Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect,” Opt. Express19(11), 10193–10198 (2011). [CrossRef] [PubMed]
  10. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett.104(20), 207403 (2010). [CrossRef] [PubMed]
  11. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72(23), 233102 (2005). [CrossRef]
  12. X. Kang, W. Tan, Z. Wang, and H. Chen, “Optic Tamm states: the Bloch-wave-expansion method,” Phys. Rev. A79(4), 043832 (2009). [CrossRef]
  13. M. E. Sasin, R. P. Seisyan, M. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett.92(25), 251112 (2008). [CrossRef]
  14. Y. K. Gong, X. M. Liu, L. R. Wang, H. Lu, and G. Wang, “Multiple responses of TPP-assisted near-perfect absorption in metal/Fibonacci quasiperiodic photonic crystal,” Opt. Express19(10), 9759–9769 (2011). [CrossRef] [PubMed]
  15. A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett.87(26), 261105 (2005). [CrossRef]
  16. W. L. Zhang and S. F. Yu, “Bistable switching using an optical Tamm cavity with a Kerr medium,” Opt. Commun.283(12), 2622–2626 (2010). [CrossRef]
  17. G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett.34(5), 578–580 (2009). [CrossRef] [PubMed]
  18. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett.101(11), 113902 (2008). [CrossRef] [PubMed]
  19. T. C. H. Liew, A. V. Kavokin, T. Ostatnický, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, “Exciton-polariton integrated circuits,” Phys. Rev. B82(3), 033302 (2010). [CrossRef]
  20. M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett.95(25), 251108 (2009). [CrossRef]
  21. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407–035415 (2006). [CrossRef]
  22. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett.6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  23. Y. K. Gong, L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express17(16), 13727–13736 (2009). [CrossRef] [PubMed]
  24. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express16(1), 413–425 (2008). [CrossRef] [PubMed]
  25. B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett.87(1), 013107–013109 (2005). [CrossRef]
  26. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express16(3), 1475–1480 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (178 KB)      QuickTime
» Media 2: MOV (197 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited