OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1246–1259

Dual transmission band Bragg grating assisted asymmetric directional couplers

Anatole Lupu, Kamal Muhieddine, Eric Cassan, and Jean-Michel Lourtioz  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1246-1259 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of artificial dispersion by material structuring is investigated for the design of highly wavelength selective directional couplers. Systems of two highly asymmetric coupled waveguides are considered with the artificial dispersion created by distributed Bragg gratings (BGs) operated near photonic band gap. It is shown that even in the case of an asymmetrical directional coupler with initially phase matched waveguides, the achievement of high wavelength selectivity requires the fulfillment of a threshold condition on the BG coupling coefficient. The presence of BG(s) leads in turn to the appearance of two transmission bands instead of one. The wavelength selectivity associated to one of these bands is much higher than that obtained in the absence of BG(s). It is also shown that under particular circumstances, dual band operation can be achieved without threshold condition. The directional coupler then exhibits two transmission bands with approximately the same width and a very low level of insertion losses. Such a dual band transmission coupler is expected to offer new functionalities for wavelength demultiplexing applications.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: November 15, 2010
Revised Manuscript: December 29, 2010
Manuscript Accepted: January 2, 2011
Published: January 11, 2011

Anatole Lupu, Kamal Muhieddine, Eric Cassan, and Jean-Michel Lourtioz, "Dual transmission band Bragg grating assisted asymmetric directional couplers," Opt. Express 19, 1246-1259 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Muhieddine, A. Lupu, E. Cassan, and J.-M. Lourtioz, “Proposal and analysis of narrow band transmission asymmetric directional couplers with Bragg grating induced phase matching,” Opt. Express 18(22), 23183–23195 (2010). [CrossRef] [PubMed]
  2. C. Wu, C. Rolland, N. Puetz, R. Bruce, K. D. Chik, and J. M. Xu, “A vertically coupled InGaAsP/InP directional coupler filter of ultranarrow bandwidth,” IEEE Photon. Technol. Lett. 3(6), 519–521 (1991). [CrossRef]
  3. B. Liu, A. Shakouri, P. Abraham, Y. J. Chiu, S. Zhang, and J. E. Bowers, “Fused InP–GaAs Vertical Coupler Filters,” IEEE Photon. Technol. Lett. 11, 93–95 (1995).
  4. S.-K. Han, R. V. Ramaswamy, and R. F. Tavlykaev, “Highly asymmetrical vertical coupler wavelength filter in InGaAlAs/InP,” Electron. Lett. 33, 30–31 (1999).
  5. C. Bornhold, F. Kappe, R. Müller, H.-P. Nolting, F. Reier, R. Stenzel, H. Venghaus, and C. M. Weinert, “Meander coupler, a novel wavelength division multiplexer/demultiplexer,” Appl. Phys. Lett. 57(24), 2517–2519 (1990). [CrossRef]
  6. A. Lupu, P. Win, H. Sik, P. Boulet, M. Carre, J. Landreau, S. Slempkes, and A. Carenco, “Tunable filter with box like spectral response for 1.28/1.32 µm duplexer application,” Electron. Lett. 35(2), 174–175 (1999). [CrossRef]
  7. A. Lupu, H. Sik, A. Mereuta, P. Boulet, M. Carré, S. Slempkes, A. Ougazzaden, and A. Carenco, “Three-waveguides two-grating codirectional coupler for 1.3-/1.3+/1.5µm demultiplexing in transceiver,” Electron. Lett. 36(24), 2030–2031 (2000). [CrossRef]
  8. P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19(16), 2848–2855 (1980). [CrossRef] [PubMed]
  9. M. S. Whalen, M. D. Divino, and R. C. Alferness, “Demonstration of a narrowband Bragg-reflection filter in a single-mode fibre directional coupler,” Electron. Lett. 22(12), 681–682 (1986). [CrossRef]
  10. R. R. A. Syms, “Optical directional coupler with a grating overlay,” Appl. Opt. 24(5), 717–726 (1985). [CrossRef] [PubMed]
  11. R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,” Opt. Quantum Electron. 19(5), 273–287 (1987). [CrossRef]
  12. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. S. J. Russell, “Novel add–drop filters for wavelength division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8(12), 1656–1658 (1996). [CrossRef]
  13. S. S. Orlov, A. Yariv, and S. Van Essen, “Coupled-mode analysis of fiber-optic add drop filters for dense wavelength-division multiplexing,” Opt. Lett. 22(10), 688–690 (1997). [CrossRef] [PubMed]
  14. T. Erdogan, “Optical add–drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1-6), 249–264 (1998). [CrossRef]
  15. I. Baumann, J. Seifert, W. Novak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996). [CrossRef]
  16. J.-L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19(3), 180–182 (1994). [CrossRef] [PubMed]
  17. A.-C. Jacob-Poulin, R. Valle’e, S. LaRochelle, D. Faucher, and G. R. Atkins, “Channel-dropping filter based on a grating-frustrated two-core fiber,” J. Lightwave Technol. 18(5), 715–720 (2000). [CrossRef]
  18. A. Yesayan and R. Vallée, “Optimized grating-frustrated coupler,” Opt. Lett. 26(17), 1329–1331 (2001). [CrossRef]
  19. A. Yesayan and R. Vallée, “Zero backreflection condition for a grating-frustrated coupler,” J. Opt. Soc. Am. B 20(7), 1418–1426 (2003). [CrossRef]
  20. N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3(4), 895–900 (1985). [CrossRef]
  21. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994). [CrossRef]
  22. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977). [CrossRef]
  23. R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,” Opt. Quantum Electron. 19(5), 273–287 (1987). [CrossRef]
  24. R. R. A. Syms, “Improved coupled mode theory for codirectionally and contradirectionally coupled waveguide arrays,” J. Opt. Soc. Am. A 8(7), 1062–1069 (1991). [CrossRef]
  25. J. Hong and W. P. Huang, “Contra-directional coupling in grating-assisted devices,” J. Lightwave Technol. 10(7), 873–881 (1992). [CrossRef]
  26. A. Hardy, “A unified approach to coupled-mode phenomena,” IEEE J. Quantum Electron. 34(7), 1109–1116 (1998). [CrossRef]
  27. N. Izhaky and A. Hardy, “Analysis of grating-assisted backward coupling employing the unified coupled-mode formalism,” J. Opt. Soc. Am. A 16(6), 1303–1311 (1999). [CrossRef]
  28. S. François, S. Fouchet, N. Bouadma, A. Ougazzaden, M. Carré, G. Hervé-Gruyer, M. Filoche, and A. Carenco, “Polarization independent filtering in a grating assisted horizontal directional coupler,” IEEE Photon. Technol. Lett. 7(7), 780–782 (1995). [CrossRef]
  29. Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling coefficient modulation of waveguide grating using sampled grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994). [CrossRef]
  30. Q. Guo and W.-P. Huang, “Polarisation-independent optical filters based on co-directional phase-shifted grating-assisted couplers: theory and design,” IEEE Proc. Optoelectron. 143(3), 173–177 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited