OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1260–1270

Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials

Kotaro Makino, Junji Tominaga, and Muneaki Hase  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1260-1270 (2011)
http://dx.doi.org/10.1364/OE.19.001260


View Full Text Article

Enhanced HTML    Acrobat PDF (2067 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A class of chalcogenide alloy materials that shows significant changes in optical properties upon an amorphous-to-crystalline phase transition has lead to development of large data capacities in modern optical data storage. Among chalcogenide phase-change materials, Ge2Sb2Te5 (GST) is most widely used because of its reliability. We use a pair of femtosecond light pulses to demonstrate the ultrafast optical manipulation of atomic arrangements from tetrahedral (amorphous) to octahedral (crystalline) Ge-coordination in GST superlattices. Depending on the parameters of the second pump-pulse, ultrafast nonthermal phase-change occurred within only few-cycles (≈1 picosecond) of the coherent motion corresponding to a GeTe4 local vibration. Using the ultrafast switch in chalcogenide alloy memory could lead to a major paradigm shift in memory devices beyond the current generation of silicon-based flash-memory.

© 2011 OSA

OCIS Codes
(210.4810) Optical data storage : Optical storage-recording materials
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 24, 2010
Revised Manuscript: December 22, 2010
Manuscript Accepted: December 26, 2010
Published: January 11, 2011

Citation
Kotaro Makino, Junji Tominaga, and Muneaki Hase, "Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials," Opt. Express 19, 1260-1270 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1260


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. H. Cohen, H. Fritzsche, and S. R. Ovshinsky, “Simple band model for amorphous semiconducting alloys,” Phys. Rev. Lett. 22(20), 1065–1068 (1969). [CrossRef]
  2. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968). [CrossRef]
  3. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid phase transitions of GeTe-Sb2Te3,” J. Appl. Phys. 69(5), 2849–2856 (1991). [CrossRef]
  4. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater. 6(11), 824–832 (2007). [CrossRef] [PubMed]
  5. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater. 7(12), 972–977 (2008). [CrossRef] [PubMed]
  6. J. Hegedüs and S. R. Elliott, “Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials,” Nat. Mater. 7(5), 399–405 (2008). [CrossRef] [PubMed]
  7. B.-S. Lee, J. R. Abelson, S. G. Bishop, D.-H. Kang, B.-K. Cheong, and K.-B. Kim, “Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases,” J. Appl. Phys. 97(9), 093509 (2005). [CrossRef]
  8. A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. 3(10), 703–708 (2004). [CrossRef] [PubMed]
  9. W. Welnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, and M. Wuttig, “Unravelling the interplay of local structure and physical properties in phase-change materials,” Nat. Mater. 5(1), 56–62 (2006). [CrossRef]
  10. J. Akola and R. O. Jones, “Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe,” Phys. Rev. B 76(23), 235201 (2007). [CrossRef]
  11. T. K. Cheng, L. H. Acioli, J. Vidal, H. J. Zeiger, G. Dresselhaus, M. S. Dresselhaus, and E. P. Ippen, “Modulation of a semiconductor-to-semimetal transition at 7 THz via coherent lattice vibrations,” Appl. Phys. Lett. 62(16), 1901–1903 (1993). [CrossRef]
  12. S. Hunsche, K. Wienecke, T. Dekorsy, and H. Kurz, “Impulsive softening of coherent phonons in tellurium,” Phys. Rev. Lett. 75(9), 1815–1818 (1995). [CrossRef] [PubMed]
  13. A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004). [CrossRef]
  14. L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M. Wolf, “Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition,” Phys. Rev. Lett. 97(6), 067402 (2006). [CrossRef] [PubMed]
  15. M. Först, T. Dekorsy, C. Trappe, M. Laurenzis, H. Kurz, and B. Bechevet, “Phase change in Ge2Sb2Te5 films investigated by coherent phonon spectroscopy,” Appl. Phys. Lett. 77(13), 1964–1966 (2000). [CrossRef]
  16. M. Hase, Y. Miyamoto, and J. Tominaga, “Ultrafast dephasing of coherent optical phonons in atomically controlled GeTe/Sb2Te3 superlattices,” Phys. Rev. B 79(17), 174112 (2009). [CrossRef]
  17. T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett. 88(12), 122114 (2006). [CrossRef]
  18. J. Tominaga, P. Fons, A. V. Kolobov, T. Shima, T. C. Chong, R. Zhao, H. K. Lee, and L. P. Shi, “Role of Ge switch in phase transition: Approach using atomically controlled GeTe/Sb2Te3 superlattice,” Jpn. J. Appl. Phys. 47(7), 5763–5766 (2008). [CrossRef]
  19. J. Tominaga, R. Simpson, P. Fons, and A. V. Kolobov, “Phase change meta-material and device characteristics,” presented at the European Symposium on Phase Change and Ovonic Science (E\PCOS 2010), Milan, Italy, 6–7 Sept. 2010. http://www.epcos.org/library/library2010.htm
  20. J. M. Combes, A. Grossmann, and Ph. Tchamitchian, eds., Proceedings of the International Conference on Wavelet: time-frequency methods and phase space (Springer-Verlag, Berlin, 1989).
  21. K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, “Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials,” J. Phys. Chem. Solids 68(5-6), 1074–1078 (2007). [CrossRef]
  22. J. Akola and R. O. Jones, “Density functional study of amorphous, liquid and crystalline Ge2Sb2Te5: Homopolar bonds and/or AB alternation?” J. Phys. Condens. Matter 20(46), 465103 (2008). [CrossRef] [PubMed]
  23. M. Hase, K. Mizoguchi, H. Harima, S. Nakashima, M. Tani, K. Sakai, and M. Hangyo, “Optical control of coherent optical phonons in bismuth films,” Appl. Phys. Lett. 69(17), 2474–2476 (1996). [CrossRef]
  24. M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258–1260 (2000). [CrossRef]
  25. T. Dekorsy, W. A. Kütt, T. Pfeifer, and H. Kurz, “Coherent control of LO phonon dynamics in opaque semiconductors by femtosecond laser pulses,” Europhys. Lett. 23(3), 223–228 (1993). [CrossRef]
  26. M. Hase, M. Kitajima, S.-I. Nakashima, and K. Mizoguchi, “Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation,” Phys. Rev. Lett. 88(6), 067401 (2002). [CrossRef] [PubMed]
  27. L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, “GaAs under intense ultrafast excitation: Response of the dielectric function,” Phys. Rev. Lett. 80(1), 185–188 (1998). [CrossRef]
  28. M. Chollet, L. Guerin, N. Uchida, S. Fukaya, H. Shimoda, T. Ishikawa, K. Matsuda, T. Hasegawa, A. Ota, H. Yamochi, G. Saito, R. Tazaki, S. Adachi, and S. Y. Koshihara, “Gigantic photoresponse in 1/4-filled-band organic salt (EDO-TTF)2PF6.,” Science 307(5706), 86–89 (2005). [CrossRef] [PubMed]
  29. A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000). [CrossRef]
  30. J. Siegel, A. Schropp, J. Solis, C. N. Afonso, and M. Wuttig, “Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses,” Appl. Phys. Lett. 84(13), 2250–2252 (2004). [CrossRef]
  31. M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nat. Mater. 4(4), 347–352 (2005). [CrossRef] [PubMed]
  32. G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature 458(7235), 178–181 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited