OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1291–1300

High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry

Te-Yu Tseng, Pau-Jen Lai, and Kung-Bin Sung  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1291-1300 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To facilitate the application of plasmonic nanoparticles (PNPs) in high-throughput detection, we develop a hyperspectral imaging system (HSIS) combining dark-filed microscopy and imaging Fourier transform spectrometry to measure scattering spectra from immobilized PNPs. The current setup has acquisition time of 5 seconds and spectral resolution of 21.4 nm at 532.1 nm. We demonstrate the applicability of the HSIS in conjunction with spectral data analysis to quantify multiple types of PNPs and detect small changes in localized surface plasmon resonance wavelengths of PNPs due to changes in the environmental refractive index.

© 2011 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6550) Spectroscopy : Spectroscopy, visible
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:

Original Manuscript: November 30, 2010
Revised Manuscript: December 21, 2010
Manuscript Accepted: December 28, 2010
Published: January 11, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Te-Yu Tseng, Pau-Jen Lai, and Kung-Bin Sung, "High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry," Opt. Express 19, 1291-1300 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Reichert, A. Csáki, J. M. Köhler, and W. Fritzsche, “Chip-based optical detection of DNA hybridization by means of nanobead labeling,” Anal. Chem. 72(24), 6025–6029 (2000). [CrossRef]
  2. T. A. Taton, G. Lu, and C. A. Mirkin, “Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes,” J. Am. Chem. Soc. 123(21), 5164–5165 (2001). [CrossRef] [PubMed]
  3. S. J. Oldenburg, C. C. Genick, K. A. Clark, and D. A. Schultz, “Base pair mismatch recognition using plasmon resonant particle labels,” Anal. Biochem. 309(1), 109–116 (2002). [CrossRef] [PubMed]
  4. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000). [CrossRef] [PubMed]
  5. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003). [PubMed]
  6. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005). [CrossRef] [PubMed]
  7. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 157–176 (1998). [CrossRef] [PubMed]
  8. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23(6), 741–745 (2005). [CrossRef] [PubMed]
  9. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt. 12(3), 034007 (2007). [CrossRef] [PubMed]
  10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  11. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009). [CrossRef]
  12. M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009). [CrossRef] [PubMed]
  13. J. Becker, O. Schubert, and C. Sönnichsen, “Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method,” Nano Lett. 7(6), 1664–1669 (2007). [CrossRef] [PubMed]
  14. G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005). [CrossRef] [PubMed]
  15. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy,” Opt. Express 13(7), 2668–2677 (2005). [CrossRef] [PubMed]
  16. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  17. D. M. Haaland, J. A. Timlin, M. B. Sinclair, M. H. V. Benthem, M. J. Martinez, A. D. Aragon, and M. Werner-Washburne, “Multivariate curve resolution for hyperspectral image analysis: applications to microarray technology,” in Proc. SPIE, R. M. Levenson, G. H. Bearman, and A. Mahadevan-Jansen, eds. (San Jose, CA, USA 2003), p. 55.
  18. J. A. Timlin, D. M. Haaland, M. B. Sinclair, A. D. Aragon, M. J. Martinez, and M. Werner-Washburne, “Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data,” BMC Genomics 6(1), 72 (2005). [CrossRef] [PubMed]
  19. A. Dubois, J. Moreau, and C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express 16(21), 17082–17091 (2008). [CrossRef] [PubMed]
  20. A. C. Curry, M. Crow, and A. Wax, “Molecular imaging of epidermal growth factor receptor in live cells with refractive index sensitivity using dark-field microspectroscopy and immunotargeted nanoparticles,” J. Biomed. Opt. 13(1), 014022 (2008). [CrossRef] [PubMed]
  21. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001). [CrossRef] [PubMed]
  22. R. T. Kester, L. Gao, and T. S. Tkaczyk, “Development of image mappers for hyperspectral biomedical imaging applications,” Appl. Opt. 49(10), 1886–1899 (2010). [CrossRef] [PubMed]
  23. G. Steiner, “Surface plasmon resonance imaging,” Anal. Bioanal. Chem. 379(3), 328–331 (2004). [CrossRef] [PubMed]
  24. R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited