OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1441–1448

Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm

Andrey D. Pryamikov, Alexander S. Biriukov, Alexey F. Kosolapov, Victor G. Plotnichenko, Sergei L. Semjonov, and Evgeny M. Dianov  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1441-1448 (2011)
http://dx.doi.org/10.1364/OE.19.001441


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical and experimental demonstration of a waveguide regime in a broad band spectral range for the hollow core microstructured optical fibers (HC MOFs) made of silica with a negative curvature of the core boundary. It is shown that HC MOFs with the cladding consisting only of one row of silica capillaries allows to guide light from the near to mid infrared despite of high material losses of silica in this spectral region. Such result can be obtained by a special arrangement of cladding capillaries which leads to a change in the sign of the core boundary curvature. The change in the sign of the core boundary curvature leads to a loss of simplicity of boundary conditions for core modes and to “localization” and limitation of their interaction with the cladding material in space. Such HC MOFs made of different materials can be potential candidates for solving problem of ultra high power transmission including transmission of CO and CO2 laser radiation.

© 2011 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.2400) Fiber optics and optical communications : Fiber properties

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 1, 2010
Revised Manuscript: December 28, 2010
Manuscript Accepted: January 10, 2011
Published: January 12, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Andrey D. Pryamikov, Alexander S. Biriukov, Alexey F. Kosolapov, Victor G. Plotnichenko, Sergei L. Semjonov, and Evgeny M. Dianov, "Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm," Opt. Express 19, 1441-1448 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1441


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Shephard, J. D. C. Jones, D. P. Hand, G. Bouwmans, J. C. Knight, P. S. J. Russell, and B. Mangan, “High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers,” Opt. Express 12(4), 717–723 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-4-717 . [CrossRef] [PubMed]
  2. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  3. F. Benabid, G. Bouwmans, J. C. Knight, P. S. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004). [CrossRef] [PubMed]
  4. J. Lu, C. Yu, H. Chang, H. Chen, Y. Li, C. Pan, and C. Sun, “Terahertz air – core microstructured fiber,” Appl. Phys. Lett. 92(6), 064105 (2008). [CrossRef]
  5. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33(9), 902–904 (2008). [CrossRef] [PubMed]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single – mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  7. P. St. J. Russell, “Photonic – crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  8. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-1-236 . [CrossRef] [PubMed]
  9. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-20-8277 . [CrossRef] [PubMed]
  10. J. D. Shephard, W. N. Macpherson, R. P. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13(18), 7139–7144 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-7139 . [CrossRef] [PubMed]
  11. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]
  12. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31(2), 172–174 (2006). [CrossRef] [PubMed]
  13. F. Benabid, “Hollow – core photonic band gap fibre: new light guidance for new science and technology,” Philos. Trans. R. Soc. London, Ser. A 364(1849), 3439–3462 (2006). [CrossRef]
  14. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7713 . [CrossRef] [PubMed]
  15. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009). [CrossRef]
  16. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23133 . [CrossRef] [PubMed]
  17. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-5-5142 . [CrossRef] [PubMed]
  18. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010). [CrossRef] [PubMed]
  19. R. Kitamura, L. Pilon, and M. Jonasz, “Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature,” Appl. Opt. 46(33), 8118–8133 (2007). [CrossRef] [PubMed]
  20. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core – shaped Kagome Hollow Core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Postdeadline Papers (Optical Society of America, 2010), paper CPDB4.
  21. E. A. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  22. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited