OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1470–1483

Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator

Jun Chen, Zachary H. Levine, Jingyun Fan, and Alan L. Migdall  »View Author Affiliations


Optics Express, Vol. 19, Issue 2, pp. 1470-1483 (2011)
http://dx.doi.org/10.1364/OE.19.001470


View Full Text Article

Enhanced HTML    Acrobat PDF (1233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a quantum-mechanical theory to describe narrow-band photon-pair generation via four-wave mixing in a Silicon-on-Insulator (SOI) micro-resonator. We also provide design principles for efficient photon-pair generation in an SOI micro-resonator through extensive numerical simulations. Microring cavities are shown to have a much wider dispersion-compensated frequency range than straight cavities. A microring with an inner radius of 8 μm can output an entangled photon comb of 21 pairwise-correlated peaks (42 comb lines) spanning from 1.3 μm to 1.8 μm. Such on-chip quantum photonic devices offer a path toward future integrated quantum photonics and quantum integrated circuits.

© 2011 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 24, 2010
Revised Manuscript: November 2, 2010
Manuscript Accepted: November 2, 2010
Published: January 13, 2011

Citation
Jun Chen, Zachary H. Levine, Jingyun Fan, and Alan L. Migdall, "Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator," Opt. Express 19, 1470-1483 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, 1st Ed., (Springer 2000). [PubMed]
  2. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337 (1995). [CrossRef] [PubMed]
  3. T. E. Kiess, Y. H. Shih, A. V. Sergienko, and C. O. Alley, “Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quanta Produced by Type-II Parametric Down-conversion,” Phys. Rev. Lett. 71, 3893 (1993). [CrossRef] [PubMed]
  4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983 (2002). [CrossRef]
  5. . H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802(R) (2004). [CrossRef]
  6. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  7. J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 3368 (2005). [CrossRef]
  8. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534 (2005). [CrossRef] [PubMed]
  9. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon waveguide quantum circuits,” Science 320, 646 (2008). [CrossRef] [PubMed]
  10. A. Mohan, M. Felici, P. Gallo, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Polarization-entangled photons produced with high-symmetry site-controlled quantum dots,” Nat. Photonics 4, 302 (2010). [CrossRef]
  11. K. Banaszek, “A. B. U’Ren, and I. A.Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides,” Opt. Lett. 26, 1367 (2001). [CrossRef]
  12. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479 (2007). [CrossRef] [PubMed]
  13. J. Chen, A. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chipscale quantum information processing,” Opt. Express 17, 6727 (2009). [CrossRef] [PubMed]
  14. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fibercoupled periodically poled KTiOPO4 waveguide,” Opt. Express 17, 12019 (2009). [CrossRef] [PubMed]
  15. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388 (2006). [CrossRef] [PubMed]
  16. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of high-purity entangled photon pairs using silicon wire waveguide,” Opt. Express 16, 20368 (2008). [CrossRef] [PubMed]
  17. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17, 16558 (2009). [CrossRef] [PubMed]
  18. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett. 25, 554 (2000). [CrossRef]
  19. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16, 4881 (2008). [CrossRef] [PubMed]
  20. Q. Lin, and G. P. Agrawal, “Silicon waveguides for creating quantum-correlated photon pairs,” Opt. Lett. 31, 3140 (2006). [CrossRef] [PubMed]
  21. H. J. Kimble, “The quantum internet,” Nature 453, 1023 (2008). [CrossRef] [PubMed]
  22. J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005). [CrossRef]
  23. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: Modeling and applications,” Opt. Express 15, 16604 (2007). [CrossRef] [PubMed]
  24. We note that the optical modes in our proposed microring resonators are not ideal whispering gallery modes, in the sense that the modes have non-zero interatction with the inner wall of the ring resonators. However, the electric field strength at the inner wall is typically no more than 1% of its peak value near the outer wall (see Fig. 2). Even though this interaction is negligibly small, we used the numerically determined modes in our calculations, rather than analytical expressions of ideal whispering gallery modes. We still refer to our modes as whispering gallery modes throughout the text, but we recognize this is an approximation.
  25. M. Scholtz, L. Koch, and O. Benson, “Analytical treatment of spectral properties and signal-idler intensity correlations for a double-resonant optical parametric oscillator far below threshold,” Opt. Commun. 282, 3518 (2009). [CrossRef]
  26. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594 (1999). [CrossRef]
  27. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: effective finite Hilbert space and entropy control,” Phys. Rev. Lett. 84, 5304 (2000). [CrossRef] [PubMed]
  28. S. Ramelow, L. Ratschbacher, A. Fedrizzi, N. K. Langford, and A. Zeilinger, “Discrete tunable color entanglement,” Phys. Rev. Lett. 103, 253601 (2009). [CrossRef]
  29. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. P. Huy, “Frequency-bin entangled photons,” Phys. Rev. A 82, 013804 (2010). [CrossRef]
  30. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31, 1295 (2006). [CrossRef] [PubMed]
  31. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguide,” Opt. Express 14, 4357 (2006). [CrossRef] [PubMed]
  32. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18, 1904 (2010).
  33. M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75 (1975). [CrossRef]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press 1985), p. 548.
  35. http://www.comsol.com
  36. Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it necessarily imply that the products are the best available for the purpose.
  37. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16, 10596 (2008). [CrossRef] [PubMed]
  38. I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres,” Phys. Rev. A 76, 043837 (2007). [CrossRef]
  39. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theory Tech. 55, 1209 (2007). [CrossRef]
  40. Private communications with M. Oxborrow and P. Del’Haye,

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited