OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1528–1538

Intense terahertz pulse induced exciton generation in carbon nanotubes

Shinichi Watanabe, Nobutsugu Minami, and Ryo Shimano  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1528-1538 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the highly nonlinear terahertz (THz) light-matter interaction in single-walled carbon nanotubes (SWNTs). The high-peak THz electric-field (∼0.7 MV/cm) and the low effective mass of carriers result in their ponderomotive energy exceeding the bandgap energy of semiconducting SWNTs. Under such an intense THz pulse irradiation, the interband excitation that results in the generation of excitons occurs, although the THz photon energy (∼4 meV) is much smaller than the gap energy of SWNTs (∼1 eV). The ultrafast dynamics of this exciton generation process is investigated by THz pump and optical probe spectroscopy. The exciton generation mechanism is described by impact excitation process induced by the strong THz E-field. Such intense THz pulse excitation provides a powerful tool to study nonlinear terahertz optics in non-perturbative regime as well as nonlinear transport phenomena in solids with ultrafast temporal resolution.

© 2011 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Ultrafast Optics

Original Manuscript: October 18, 2010
Revised Manuscript: December 14, 2010
Manuscript Accepted: December 16, 2010
Published: January 13, 2011

Shinichi Watanabe, Nobutsugu Minami, and Ryo Shimano, "Intense terahertz pulse induced exciton generation in carbon nanotubes," Opt. Express 19, 1528-1538 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. V. Keldysh, "Ionization in the field of a strong electromagnetic wave," Sov. Phys. JETP 20, 1307-1314 (1965).
  2. P. B. Corkum, "Plasma perspective on strong field multiphoton ionization," Phys. Rev. Lett. 71, 1994-1997 (1993). [CrossRef] [PubMed]
  3. F. Krausz, and M. Ivanov, "Attosecond physics," Rev. Mod. Phys. 81, 163-234 (2009). [CrossRef]
  4. R. R. Jones, D. You, and P. H. Bucksbaum, "Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses," Phys. Rev. Lett. 70, 1236-1239 (1993). [CrossRef] [PubMed]
  5. A. H. Chin, J. M. Bakker, and J. Kono, "Ultrafast electroabsorption at the transition between classical and quantum response," Phys. Rev. Lett. 85, 3293-3296 (2000). [CrossRef] [PubMed]
  6. D. J. Cook, and R. M. Hochstrasser, "Intense terahertz pulses by four-wave rectification in air," Opt. Lett. 25, 1210-1212 (2000). [CrossRef]
  7. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, "Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities," J. Opt. Soc. Am. B 25, B6-B19 (2008). [CrossRef]
  8. M. Jewariya, M. Nagai, and K. Tanaka, "Enhancement of terahertz wave generation by cascaded x(2) processes in LiNbO3," J. Opt. Soc. Am. B 26, A101-A106 (2009). [CrossRef]
  9. P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, and K. H. Ploog, "Nonlinear terahertz response of n-type GaAs," Phys. Rev. Lett. 96, 187402 (2006). [CrossRef] [PubMed]
  10. H. Wen, M. Wiczer, and A. M. Lindenberg, "Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses," Phys. Rev. B 78, 125203 (2008). [CrossRef]
  11. J. L. Liu, and X. C. Zhang, "Terahertz-radiation-enhanced emission of fluorescence from gas plasma," Phys. Rev. Lett. 103, 235002 (2009). [CrossRef]
  12. S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. T. Steiner, M. Kira, S. W. Koch, A. Leitenstorfer, and R. Huber, "Terahertz coherent control of optically dark paraexcitons in Cu2O," Phys. Rev. Lett. 101, 246401 (2008). [CrossRef]
  13. A. Houard, Y. Liu, B. Prade, V. T. Tikhonchuk, and A. Mysyrowicz, "Strong enhancement of terahertz radiation from laser filaments in air by a static electric field," Phys. Rev. Lett. 100, 255006 (2008). [CrossRef] [PubMed]
  14. F. H. Su, F. Blanchard, G. Sharma, L. Razzari, A. Ayesheshim, T. L. Cocker, L. V. Titova, T. Ozaki, J. C. Kieffer, R. Morandotti, M. Reid, and F. A. Hegmann, "Terahertz pulse induced intervalley scattering in photoexcited GaAs," Opt. Express 17, 9620-9629 (2009). [CrossRef] [PubMed]
  15. M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, "Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy," Phys. Rev. B 79, 161201 (2009). [CrossRef]
  16. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002). [PubMed]
  17. B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco, "Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts," Chem. Phys. Lett. 317, 497-503 (2000). [CrossRef]
  18. S. M. Bachilo, L. Balzano, J. E. Herrera, F. Pompeo, D. E. Resasco, and R. B. Weisman, "Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst," J. Am. Chem. Soc. 125, 11186-11187 (2003). [CrossRef]
  19. N. Minami, Y. Kim, K. Miyashita, S. Kazaoui, and B. Nalini, "Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy," Appl. Phys. Lett. 88, 093123 (2006). [CrossRef]
  20. Y. Kim, N. Minami, and S. Kazaoui, "Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films," Appl. Phys. Lett. 86, 073103 (2005). [CrossRef]
  21. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, "Design of high-energy terahertz sources based on optical rectification," Opt. Express 18, 12311-12327 (2010). [CrossRef] [PubMed]
  22. Y. Berozashvili, S. Machavariani, A. Natsvlishvili, and A. Chirakadze, "Dispersion of the linear electro-optic coefficients and the non-linear susceptibility in GaP," J. Phys. D Appl. Phys. 22, 682-686 (1989). [CrossRef]
  23. T. Ogawa, S. Watanabe, N. Minami, and R. Shimano, "Room temperature terahertz electro-optic modulation by excitons in carbon nanotubes," Appl. Phys. Lett. 97, 041111 (2010). [CrossRef]
  24. T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, "Localized and delocalized electronic states in single-wall carbon nanotubes," Phys. Rev. Lett. 80, 4729-4732 (1998). [CrossRef]
  25. S. Kazaoui, N. Minami, H. Yamawaki, K. Aoki, H. Kataura, and Y. Achiba, "Pressure dependence of the optical absorption spectra of single-walled carbon nanotube films," Phys. Rev. B 62, 1643-1646 (2000). [CrossRef]
  26. R. B. Weisman, and S. M. Bachilo, "Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot," Nano Lett. 3, 1235-1238 (2003). [CrossRef]
  27. R. Shimano, T. Ogawa, and S. Watanabe, "Intense terahertz field-Induced electroabsorption in carbon nanotubes," Proceedings of The 35th International Conference on Infrared, Millimeter and THz Waves (IRMMW-THz 2010).
  28. S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, "Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures," Phys. Rev. B 32, 6601-6609 (1985). [CrossRef]
  29. L. Lüer, S. Hoseinkhani, D. Polli, J. Crochet, T. Hertel, and G. Lanzani, "Size and mobility of excitons in (6, 5) carbon nanotubes," Nat. Phys. 5, 54-58 (2009). [CrossRef]
  30. Y.-Z. Ma, J. Stenger, J. Zimmermann, S. M. Bachilo, R. E. Smalley, R. B. Weisman, and G. R. Fleming, "Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy," J. Chem. Phys. 120, 3368-3373 (2004). [CrossRef] [PubMed]
  31. J. Wang, M. W. Graham, Y. Ma, G. R. Fleming, and R. A. Kaindl, "Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes," Phys. Rev. Lett. 104, 177401 (2010). [CrossRef] [PubMed]
  32. T. G. Pedersen, K. Pedersen, H. D. Cornean, and P. Duclos, "Stability and signatures of biexcitons in carbon nanotubes," Nano Lett. 5, 291-294 (2005). [CrossRef] [PubMed]
  33. M. Freitag, M. Steiner, A. Naumov, J. P. Small, A. A. Bol, V. Perebeinos, and P. Avouris, "Carbon nanotube photo- and electroluminescence in longitudinal electric fields," ACS Nano 3, 3744-3748 (2009). [CrossRef] [PubMed]
  34. D. Jena, T. Fang, Q. Zhang, and H. Xing, "Zener tunneling in semiconducting nanotube and graphene nanoribbon p - n junctions," Appl. Phys. Lett. 93, 112106 (2008). [CrossRef]
  35. J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, and P. Avouris, "Bright infrared emission from electrically induced excitons in carbon nanotubes," Science 310, 1171-1174 (2005). [CrossRef] [PubMed]
  36. A. Liao, Y. Zhao, and E. Pop, "Avalanche-induced current enhancement in semiconducting carbon nanotubes," Phys. Rev. Lett. 101, 256804 (2008). [CrossRef] [PubMed]
  37. N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen, "Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes," Science 325, 1367-1371 (2009). [CrossRef] [PubMed]
  38. V. Perebeinos, and P. Avouris, "Impact excitation by hot carriers in carbon nanotubes," Phys. Rev. B 74, 121410 (2006). [CrossRef]
  39. S. Kazaoui, N. Minami, R. Jacquemin, H. Kataura, and Y. Achiba, "Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy," Phys. Rev. B 60, 13339-13342 (1999). [CrossRef]
  40. K. B. Nordstrom, K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki, "Excitonic dynamical Franz-Keldysh effect," Phys. Rev. Lett. 81, 457-460 (1998). [CrossRef]
  41. V. Perebeinos, and P. Avouris, "Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes," Nano Lett. 7, 609-613 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited