OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1617–1625

Enhancement of two photon processes in quantum dots embedded in subwavelength metallic gratings

Moshe G. Harats, Ilai Schwarz, Adiel Zimran, Uri Banin, Gang Chen, and Ronen Rapaport  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1617-1625 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show a large enhancement of two-photon absorption processes in nanocrystal quantum dots and of light upconversion efficiency from the IR to the near-IR spectral regime, using a hybrid optical device in which near-IR emitting InAs quantum dots were embedded on top a metallic nanoslit array. The resonant enhancement of these nonlinear optical processes is due to the strong local electromagnetic field enhancements inside the nanoslit array structure at the extraordinary transmission resonances. A maximal two-photon absorption enhancement of more than 20 was inferred. Different high field regions were identified for different polarizations, which can be used for designing and optimizing efficient nonlinear processes in such hybrid structures. Combining nanocrystal quantum dots with subwavelength metallic nanostructures is therefore a promising way for a range of possible nonlinear optical devices.

© 2011 Optical Society of America

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

Original Manuscript: November 18, 2010
Revised Manuscript: December 12, 2010
Manuscript Accepted: December 13, 2010
Published: January 13, 2011

Moshe G. Harats, Ilai Schwarz, Adiel Zimran, Uri Banin, Gang Chen, and Ronen Rapaport, "Enhancement of two photon processes in quantum dots embedded in subwavelength metallic gratings," Opt. Express 19, 1617-1625 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003). [CrossRef] [PubMed]
  2. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, "Quantum dots for live cells, in vivo imaging, and diagnostics," Science 307, 538-544 (2005). [CrossRef] [PubMed]
  3. X. Gao, W. C. W. Chan, and S. Nie, "Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding," J. Biomed. Opt. 7, 532-537 (2002). [CrossRef] [PubMed]
  4. X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, "In vivo molecular and cellular imaging with quantum dots," Curr. Opin. Biotechnol. 16, 63-72 (2005). [CrossRef] [PubMed]
  5. S. C. Lee, S. Krishna, and S. R. J. Brueck, "Quantum dot infrared photodetector enhanced by surface plasma wave excitation," Opt. Express 17, 23160-23168 (2009). [CrossRef]
  6. A. J. Nozik, "Quantum dot solar cells," Physica E 14, 115-120 (2002). [CrossRef]
  7. G. Conibeer, M. Green, E. Cho, D. Knig, Y. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield, "Silicon quantum dot nanostructures for tandem photovoltaic cells," Thin Solid Films 516, 6748-6756 (2008). [CrossRef]
  8. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000). [CrossRef] [PubMed]
  9. S. Hideaki, N. Kenich, O. Ichiro, S. Shigeo, and S. Yoshimasa, "Room-temperature lasing operation of a quantum-dot vertical-cavity surface-emitting laser," Appl. Phys. Lett. 69, 3140-3142 (1996). [CrossRef]
  10. D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, "1.3 μm room-temperature GaAs-based quantum-dot laser," Appl. Phys. Lett. 73, 2564-2566 (1998). [CrossRef]
  11. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, "Quantum correlation among photons from a single quantum dot at room temperature," Nature 406, 968 (2000). [CrossRef] [PubMed]
  12. C. Santori, D. Fattal, J. Vučković, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002). [CrossRef] [PubMed]
  13. W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, "Enhancement of room-temperature photoluminescence in InAs quantum dots," Appl. Phys. Lett. 83, 4300-4302 (2003). [CrossRef]
  14. C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. D. Krauss, "Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity," Appl. Phys. Lett. 82, 4032-4034 (2003). [CrossRef]
  15. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, "Enhanced luminescence of CdSe quantum dots on gold colloids," Nano Lett. 2, 1449-1452 (2002). [CrossRef]
  16. H. Aouani, S. Itzhakov, D. Gachet, E. Devaux, T. W. Ebbesen, H. Rigneault, D. Oron, and J. Wenger, "Colloidal quantum dots as probes of excitation field enhancement in photonic antennas," ACS Nano 4, 4571-4578 (2010). [CrossRef] [PubMed]
  17. S. C. Pu, M. J. Yang, C. C. Hsu, C. W. Lai, C. C. Hsieh, S. H. Lin, Y. M. Cheng, and P. T. Chou, "The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots," Small 2, 1308-1313 (2006). [CrossRef] [PubMed]
  18. L. A. Padilha, J. Fu, D. J. Hagan, E. W. Van Stryland, C. L. Cesar, L. C. Barbosa, C. H. B. Cruz, D. Buso, and A. Martucci, "Frequency degenerate and nondegenerate two-photon absorption spectra of semiconductor quantum dots," Phys. Rev. B 75, 075325 (2007). [CrossRef]
  19. Y. Yingli, and W. Wei, "Two-photon absorption of quantum dots in the regime of very strong confinement: size and wavelength dependence," J. Opt. Soc. Am. B 26, 1897-1904 (2009). [CrossRef]
  20. I. Dancus, V. I. Vlad, A. Petris, N. Gaponik, V. Lesnyak, and A. Eychmüller, "Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots," Opt. Lett. 35, 1079-1081 (2010). [CrossRef] [PubMed]
  21. X. Xingsheng, Y. Toshiki, U. Rieko, and O. Akira, "Two-photon excited fluorescence from CdSe quantum dots on SiN photonic crystals," Appl. Phys. Lett. 95, 221113 (2009). [CrossRef]
  22. Z. Lin, and J. Vučković, "Enhanced two-photon processes in single quantum dots inside photonic crystal nanocavities," Phys. Rev. B 81, 035301 (2010). [CrossRef]
  23. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  24. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Rev. Mod. Phys. 82, 729-787 (2010). [CrossRef]
  25. A. Barbara, P. Quémerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phys. Rev. B 66, 161403 (2002). [CrossRef]
  26. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  27. E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, "Extraordinary optical transmission without plasmons: the s-polarization case," J. Opt. A 8, S94 (2006). [CrossRef]
  28. M. Guillaumée, M. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, "Observation of enhanced transmission for s-polarized light through a subwavelength slit," Opt. Express 18, 9722-9727 (2010). [CrossRef] [PubMed]
  29. I. Schwarz, N. Livneh, and R. Rapaport, "A unified analytical model for extraordinary transmission in subwavelength metallic gratings," arXiv:1011.3713v1 (2010).
  30. J. T. Shen, and P. M. Platzman, "Properties of a one-dimensional metallo-photonic crystal," Phys. Rev. B 70, 035101 (2004). [CrossRef]
  31. G. A. Wurtz, R. Pollard, and A. V. Zayats, "Optical bistability in nonlinear surface-plasmon polaritonic crystals," Phys. Rev. Lett. 97, 057402 (2006). [CrossRef] [PubMed]
  32. E. Verhagen, L. Kuipers, and A. Polman, "Field enhancement in metallic subwavelength aperture arrays probed by erbium upconversion luminescence," Opt. Express 17, 14586-14598 (2009). [CrossRef] [PubMed]
  33. U. Woggon, Optical properties of semiconductor quantum dots. Springer tracts in modern physics (Berlin: Springer-Verlag, 1997).
  34. Y. Cao, and U. Banin, "Growth and properties of semiconductor core/shell nanocrystals with InAs cores," J. Am. Chem. Soc. 122, 9692-9702 (2000). [CrossRef]
  35. G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, "Optical gain from InAs nanocrystal quantum dots in a polymer matrix," Appl. Phys. Lett. 87, 251108 (2005). [CrossRef]
  36. R. W. Boyd, Nonlinear Optics Second Ed. (Academic Press, 2003).
  37. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B 66, 195105 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited