OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1626–1640

Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector

Greg Futia, Philip Schlup, David G. Winters, and Randy A. Bartels  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1626-1640 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Line imaging of fluorescent and absorptive objects with a single-pixel imaging technique that acquires one-dimensional cross-sections through a sample by imposing a spatially-varying amplitude modulation on the probing beam is demonstrated. The fluorophore concentration or absorber distribution of the sample is directly mapped to modulation frequency components of the spatially-integrated temporal signal. Time-domain signals are obtained from a single photodiode, with object spatial frequency correlation encoded in time-domain bursts in the electronic signal from the photodiode.

© 2011 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(110.2990) Imaging systems : Image formation theory
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:

Original Manuscript: November 18, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: January 11, 2011
Published: January 13, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Greg Futia, Philip Schlup, David G. Winters, and Randy A. Bartels, "Spatially-chirped modulation imaging of absorption and fluorescent objects on single-element optical detector," Opt. Express 19, 1626-1640 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80, 081101 (2009). [CrossRef] [PubMed]
  2. W. Gobel, B. M. Kampa, and F. Helmchen, “Imaging cellular network dynamics in three dimensions using fast 3d laser scanning,” Nat. Methods 4, 73–79 (2007). [CrossRef]
  3. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source oct imaging of the anterior segment of human eye at 200 khz with adjustable imaging range,” Opt. Express 17, 14880–14894 (2009). [CrossRef] [PubMed]
  4. N. Ji, H. Shroff, H. N. Zhong, and E. Betzig, “Advances in the speed and resolution of light microscopy,” Curr. Opin. Neurobiol. 18, 605–616 (2008). [CrossRef]
  5. R. A. Niesner, V. Andresen, and M. Gunzer, “Intravital two-photon microscopy: focus on speed and time resolved imaging modalities,” Immunol. Rev. 221, 7–25 (2008). [CrossRef] [PubMed]
  6. C. Nitschke, A. Garin, M. Kosco-Vilbois, and M. Gunzer, “3D and 4D imaging of immune cells in vitro and in vivo,” Histochem. Cell Biol. 130, 1053–1062 (2008). [CrossRef] [PubMed]
  7. G. D. Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11, 713–720 (2008). [CrossRef]
  8. P. J. Scherz, J. Huisken, P. Sahai-Hernandez, and D. Y. R. Stainier, “High-speed imaging of developing heart valves reveals interplay of morphogenesis and function,” Development 135, 1179–1187 (2008). [CrossRef] [PubMed]
  9. G. Stutzmann, “Seeing the brain in action: how multiphoton imaging has advanced our understanding of neuronal function,” Microsc. Microanal. 14, 482–491 (2008). [CrossRef] [PubMed]
  10. S. Blonski and T. A. Kowalewski, “Piv analysis of turbulent flow in a micro-channel,” Theor. Appl. Mech. 45, 489–503 (2007).
  11. S. Gekle, J. M. Gordillo, D. van der Meer, and D. Lohse, “High-speed jet formation after solid object impact,” Phys. Rev. Lett. 102, 034502 (2009). [CrossRef] [PubMed]
  12. D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Samuelson, “High-speed nanometer-scale imaging for studies of nanowire mechanics,” Small 3, 1699–1702 (2007). [CrossRef] [PubMed]
  13. J. R. Royer, D. J. Evans, L. Oyarte, Q. Guo, E. Kapit, M. E. Mobius, S. R. Waitukaitis, and H. M. Jaeger, “High-speed tracking of rupture and clustering in freely falling granular streams,” Nature 459, 1110–1113 (2009). [CrossRef] [PubMed]
  14. S. T. Thoroddsen, T. G. Etoh, and K. Takehara, “High-speed imaging of drops and bubbles,” Annu. Rev. Fluid Mech. 40, 257–285 (2008). [CrossRef]
  15. M. El-Desouki, M. J. Deen, Q. Y. Fang, L. Liu, F. Tse, and D. Armstrong, “Cmos image sensors for high speed applications,” Sensors 9, 430–444 (2009). [CrossRef]
  16. J. J. Art and M. B. Goodman, “Rapid-scanning confocal microscopy,” in Methods in Cell Biology, B. Matsumoto, ed. (Academic Press, 1993), Vol 38, pp. 47–77. [PubMed]
  17. K. B. Im, S. M. Han, H. Park, D. Kim, and B. M. Kim, “Simple high-speed confocal line-scanning microscope,” Opt. Express 13, 5151–5156 (2005). [CrossRef] [PubMed]
  18. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23, 1152–1154 (1998). [CrossRef]
  19. R. Wolleschensky, B. Zimmermann, and M. Kempe, “High-speed confocal fluorescence imaging with a novel line scanning microscope,” J. Biomed. Opt. 11, 064011 (2006). [CrossRef]
  20. G. Q. Xiao, T. R. Corle, and G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988). [CrossRef]
  21. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997). [CrossRef]
  22. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J. 77, 3341–3349 (1999). [CrossRef] [PubMed]
  23. W. Denk, J. H. Strickler, and W. W. Webb, “2-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef] [PubMed]
  24. J. D. Lechleiter, D. T. Lin, and I. Sieneart, “Multi-photon laser scanning microscopy using an acoustic optical deflector,” Biophys. J. 83, 2292–2299 (2002). [CrossRef] [PubMed]
  25. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express 3, 315–324 (1998). [CrossRef] [PubMed]
  26. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  27. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Control and measurement of spatially inhomogeneous polarization distributions in third-harmonic generation microscopy,” Opt. Lett. 34, 1090–1092 (2009). [CrossRef] [PubMed]
  28. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Enhanced spatial resolution in third-harmonic microscopy through polarization switching,” Opt. Lett. 34, 1240–1242 (2009). [CrossRef] [PubMed]
  29. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express 18, 9840–9851 (2010). [CrossRef] [PubMed]
  30. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998). [CrossRef]
  31. K. Bahlmann, P. T. C. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (mmm) at a frame rate beyond 600 hz,” Opt. Express 15, 10991–10998 (2007). [CrossRef] [PubMed]
  32. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16, 10364–10371 (2008). [CrossRef] [PubMed]
  33. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7, 273–279 (2000). [CrossRef] [PubMed]
  34. A. Vaziri, and C. V. Shank, “Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing,” Opt. Express 18, 19645–19655 (2010). [CrossRef] [PubMed]
  35. R. Juskaitis, T. Wilson, M. A. A. Neil, and M. Kozubek, “Efficient real-time confocal microscopy with white light sources,” Nature 383, 804–806 (1996). [CrossRef] [PubMed]
  36. R. Heintzmann, and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037–5045 (2006). [CrossRef] [PubMed]
  37. J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 14–20 (2008). [CrossRef]
  38. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008). [CrossRef]
  39. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008). [CrossRef]
  40. J. S. Sanders, R. G. Driggers, C. E. Halford, and S. T. Griffin, “Imaging with frequency-modulated reticles,” Opt. Eng. 30, 1720–1724 (1991). [CrossRef]
  41. L. M. Biberman, Reticles in electro-optical devices, International series of monographs in infrared science and technology (Pergamon Press, 1966), Vol. 1.
  42. J. K. Bae, Y. H. Doh, D. S. Noh, and S. J. Kim, “Imaging system using frequency modulation time division multiplexing hybrid reticle,” Opt. Eng. 37, 2119–2123 (1998). [CrossRef]
  43. R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. F. Williams, “Parameters of spinning fm reticles,” Appl. Opt. 30, 887–895 (1991). [CrossRef] [PubMed]
  44. D. Lovell, “Electro-optic position indicator system,” U.S. Patent 2,997,699 (22 Aug. 1961).
  45. J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Spectral- and frequency-encoded fluorescence imaging,” Opt. Lett. 30, 2760–2762 (2005). [CrossRef] [PubMed]
  46. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2004). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited