OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 2 — Jan. 17, 2011
  • pp: 1648–1655

Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles

Qiao Min, Yuanjie Pang, Daniel J. Collins, Nikita A. Kuklev, Kristy Gottselig, David W. Steuerman, and Reuven Gordon  »View Author Affiliations

Optics Express, Vol. 19, Issue 2, pp. 1648-1655 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal nanoparticles allow for surface-enhanced Raman scattering (SERS), with applications including spectroscopy and highly-multiplexed biolabels. Despite advances in nanoparticles design nanoparticles, the SERS from these systems is still weak when compared with randomly roughened substrates, and this limits their efficacy for many applications. Here, we coherently boost the SERS signal of colloidally-synthesized silver nano-prisms over 50 × by using multilayer substrates. Theoretical calculations verify the enhancement, and uncover the near-field response. This points the way toward a versatile platform for greater SERS enhancement from nanoparticles.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:

Original Manuscript: December 8, 2010
Revised Manuscript: January 12, 2011
Manuscript Accepted: January 12, 2011
Published: January 13, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Qiao Min, Yuanjie Pang, Daniel J. Collins, Nikita A. Kuklev, Kristy Gottselig, David W. Steuerman, and Reuven Gordon, "Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles," Opt. Express 19, 1648-1655 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  2. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  3. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005). [CrossRef] [PubMed]
  4. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 601–626 (2008). [CrossRef]
  5. A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, “New biochip technology for label-free detection of pathogens and their toxins,” J. Microbiol. Methods 53(2), 221–233 (2003). [CrossRef] [PubMed]
  6. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8(8), 2321–2327 (2008). [CrossRef] [PubMed]
  7. X. Y. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, “Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 127(12), 4484–4489 (2005). [CrossRef] [PubMed]
  8. J. Ni, R. J. Lipert, G. B. Dawson, and M. D. Porter, “Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids,” Anal. Chem. 71(21), 4903–4908 (1999). [CrossRef] [PubMed]
  9. L. D. Qin, S. Park, L. Huang, and C. A. Mirkin, “On-wire lithography,” Science 309(5731), 113–115 (2005). [CrossRef] [PubMed]
  10. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001). [CrossRef]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  12. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294(5548), 1901–1903 (2001). [CrossRef] [PubMed]
  13. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman-Spectra of Pyridine Adsorbed at a Silver Electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974). [CrossRef]
  14. M. Moskovits, “Surface-Enhanced Spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  15. L. C. T. Shoute, “Multilayer substrate-mediated tuning resonance of plasmon and SERS EF of nanostructured silver,” ChemPhysChem 11(12), 2539–2545 (2010). [CrossRef] [PubMed]
  16. L. C. T. Shoute, A. J. Bergren, A. M. Mahmoud, K. D. Harris, and R. L. McCreery, “Optical interference effects in the design of substrates for surface-enhanced Raman spectroscopy,” Appl. Spectrosc. 63(2), 133–140 (2009). [CrossRef] [PubMed]
  17. H. C. Kim and X. Cheng, “SERS-active substrate based on gap surface plasmon polaritons,” Opt. Express 17(20), 17234–17241 (2009). [CrossRef] [PubMed]
  18. L. P. Du, X. J. Zhang, T. Mei, and X. C. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010). [CrossRef] [PubMed]
  19. J. M. Montgomery, A. Imre, U. Welp, V. Vlasko-Vlasov, and S. K. Gray, “SERS enhancements via periodic arrays of gold nanoparticles on silver film structures,” Opt. Express 17(10), 8669–8675 (2009). [CrossRef] [PubMed]
  20. K. H. Drexhage, M. Fleck, H. Kuhn, F. P. Schafer, and W. Sperling, “Beeinflussung Der Fluoreszenz Eines Europiumchelates Durch Einen Spiegel,” Ber. Bunsenges. Phys. Chem 70, 1179 (1966).
  21. R. M. Amos and W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror,” Phys. Rev. B 55(11), 7249–7254 (1997). [CrossRef]
  22. L. Novotny, and B. Hecht, Principles of nano-optics (Cambridge University Press, 2006).
  23. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970). [CrossRef]
  24. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978). [CrossRef]
  25. J. A. Dieringer, R. B. Lettan, K. A. Scheidt, and R. P. Van Duyne, “A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 129(51), 16249–16256 (2007). [CrossRef] [PubMed]
  26. J. Zhao, J. A. Dieringer, X. Y. Zhang, G. C. Schatz, and R. P. Van Duyne, “Wavelength-Scanned Surface-Enhanced Resonance Raman Excitation Spectroscopy,” J. Phys. Chem. C 112(49), 19302–19310 (2008). [CrossRef]
  27. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109(22), 11279–11285 (2005). [CrossRef]
  28. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  29. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003). [CrossRef]
  30. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  32. M. Kerker, D. S. Wang, and H. Chew, “Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata,” Appl. Opt. 19(24), 4159–4174 (1980). [CrossRef] [PubMed]
  33. E. C. Le Ru, M. Meyer, and P. G. Etchegoin, “Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique,” J. Phys. Chem. B 110(4), 1944–1948 (2006). [CrossRef] [PubMed]
  34. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010). [CrossRef] [PubMed]
  35. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–6 (2008). [CrossRef] [PubMed]
  36. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4(5), 312–315 (2010). [CrossRef]
  37. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley-Interscience, 2005). 38.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited